Highly Reliable Electrocaloric Behaviors of Antiferroelectric Al:ZrO₂ Thin Films for Solid-State Cooling in Integrated Circuits

Author(s):  
Yu-Hua Liu ◽  
Li-Hsiang Lin ◽  
Shao-Hao Lu ◽  
Hsin-Chun Lu ◽  
Jer-Chyi Wang
2020 ◽  
Vol 67 (4) ◽  
pp. 1769-1775
Author(s):  
Sankar Prasad Bag ◽  
Xu Hou ◽  
Jingtong Zhang ◽  
Shuanghao Wu ◽  
Jie Wang

2019 ◽  
Vol 7 (45) ◽  
pp. 14109-14115 ◽  
Author(s):  
Biaolin Peng ◽  
Jintao Jiang ◽  
Silin Tang ◽  
Miaomiao Zhang ◽  
Laijun Liu ◽  
...  

The electrocaloric (EC) effect in ferroelectric/antiferroelectric thin films has been widely investigated due to its potential applications in solid state cooling devices.


2019 ◽  
Vol 7 (6) ◽  
pp. 1670-1680 ◽  
Author(s):  
Yo-Seop Yoon ◽  
Won-Yong Lee ◽  
No-Won Park ◽  
Gil-Sung Kim ◽  
Rafael Ramos ◽  
...  

Superlattice thin films, which are used in thermoelectric (TE) devices for small-scale solid-state cooling and for generating electrical power, have recently been attracting attention due to their low dimensionality, low thermal conductivity, and enhanced power factor.


Author(s):  
L.J. Chen ◽  
Y.F. Hsieh

One measure of the maturity of a device technology is the ease and reliability of applying contact metallurgy. Compared to metal contact of silicon, the status of GaAs metallization is still at its primitive stage. With the advent of GaAs MESFET and integrated circuits, very stringent requirements were placed on their metal contacts. During the past few years, extensive researches have been conducted in the area of Au-Ge-Ni in order to lower contact resistances and improve uniformity. In this paper, we report the results of TEM study of interfacial reactions between Ni and GaAs as part of the attempt to understand the role of nickel in Au-Ge-Ni contact of GaAs.N-type, Si-doped, (001) oriented GaAs wafers, 15 mil in thickness, were grown by gradient-freeze method. Nickel thin films, 300Å in thickness, were e-gun deposited on GaAs wafers. The samples were then annealed in dry N2 in a 3-zone diffusion furnace at temperatures 200°C - 600°C for 5-180 minutes. Thin foils for TEM examinations were prepared by chemical polishing from the GaA.s side. TEM investigations were performed with JE0L- 100B and JE0L-200CX electron microscopes.


Author(s):  
N. Rozhanski ◽  
V. Lifshitz

Thin films of amorphous Ni-Nb alloys are of interest since they can be used as diffusion barriers for integrated circuits on Si. A native SiO2 layer is an effective barrier for Ni diffusion but it deformation during the crystallization of the alloy film lead to the appearence of diffusion fluxes through it and the following formation of silicides. This study concerns the direct evidence of the action of stresses in the process of the crystallization of Ni-Nb films on Si and the structure of forming NiSi2 islands.


Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


Author(s):  
Nathan Wang ◽  
Saunil Shah ◽  
Camille Garcia ◽  
Vicente Pasating ◽  
George Perreault

Abstract MEMS samples, with their relatively large size and weight, present a unique challenge to the failure analyst as they also included thin films and microstructures used in conventional integrated circuits. This paper describes how to accommodate the large MEMS structures without skimping on the microanalyses needed to get to the root cause. Investigations of tuning folk gyroscopes were used to demonstrate these new techniques.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1494
Author(s):  
Mustapha El Hariri El Nokab ◽  
Khaled O. Sebakhy

Solid-state NMR has proven to be a versatile technique for studying the chemical structure, 3D structure and dynamics of all sorts of chemical compounds. In nanotechnology and particularly in thin films, the study of chemical modification, molecular packing, end chain motion, distance determination and solvent-matrix interactions is essential for controlling the final product properties and applications. Despite its atomic-level research capabilities and recent technical advancements, solid-state NMR is still lacking behind other spectroscopic techniques in the field of thin films due to the underestimation of NMR capabilities, availability, great variety of nuclei and pulse sequences, lack of sensitivity for quadrupole nuclei and time-consuming experiments. This article will comprehensively and critically review the work done by solid-state NMR on different types of thin films and the most advanced NMR strategies, which are beyond conventional, and the hardware design used to overcome the technical issues in thin-film research.


JOM ◽  
2021 ◽  
Author(s):  
Evgeny T. Moiseenko ◽  
Sergey M. Zharkov ◽  
Roman R. Altunin ◽  
Oleg V. Belousov ◽  
Leonid A. Solovyov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document