Simulation of Polymeric Insulators Ageing Induced by the Impact Energy of Electrons During Partial Discharge Activity

Author(s):  
Johnatan M. Rodriguez-Serna ◽  
Ricardo Albarracin-Sanchez
2009 ◽  
Vol 129 (12) ◽  
pp. 922-930 ◽  
Author(s):  
Kai Zhou ◽  
Guangning Wu ◽  
Xiaoxia Guo ◽  
Liren Zhou ◽  
Tao Zhang

2021 ◽  
pp. 152808372110154
Author(s):  
Ziyu Zhao ◽  
Tianming Liu ◽  
Pibo Ma

In this paper, biaxial warp-knitted fabrics were produced with different high tenacity polyester linear density and inserted yarns density. The low-velocity impact property of flexible composites made of polyurethane as matrix and biaxial warp-knitted fabric as reinforcement has been investigated. The effect of impactor shape and initial impact energy on the impact response of flexible composite is tested. The results show that the initial impact energy have minor effect on the impact response of the biaxial warp-knitted flexible composites. The impact resistance of flexible composite specimen increases with the increase of high tenacity polyester linear density and inserted yarns density. The damage morphology of flexible composite materials is completely different under different impactor shapes. The findings have theoretical and practical significance for the applications of biaxial warp-knitted flexible composite.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Hiroyuki Yamada ◽  
Kohei Tateyama ◽  
Shino Naruke ◽  
Hisashi Sasaki ◽  
Shinichi Torigata ◽  
...  

AbstractThe destruction caused by ballistic ejecta from the phreatic eruptions of Mt. Ontake in 2014 and Mt. Kusatsu-Shirane (Mt. Moto-Shirane) in 2018 in Japan, which resulted in numerous casualties, highlighted the need for better evacuation facilities. In response, some mountain huts were reinforced with aramid fabric to convert them into shelters. However, a number of decisions must be made when working to increase the number of shelters, which depend on the location where they are to be built. In this study, we propose a method of using high-strength steel to reinforce wooden buildings for use as shelters. More specifically, assuming that ballistic ejecta has an impact energy of 9 kJ or more, as in previous studies, we developed a method that utilizes SUS304 and SS400 unprocessed steel plates based on existing impact test data. We found that SUS304 is particularly suitable for use as a reinforcing material because it has excellent impact energy absorption characteristics due to its high ductility as well as excellent corrosion resistance. With the aim of increasing the structural strength of steel shelters, we also conducted an impact test on a shelter fabricated from SS400 deck plates (i.e., steel with improved flexural strength provided by work-hardened trapezoidal corrugated plates). The results show that the shelter could withstand impact with an energy of 13.5 kJ (2.66 kg of simulated ballistic ejecta at 101 m/s on impact). In addition, from the result of the impact test using the roof-simulating structure, it was confirmed the impact absorption energy is further increased when artificial pumice as an additional protective layer is installed on this structure. Observations of the shelter after the impact test show that there is still some allowance for deformation caused by projectile impact, which means that the proposed steel shelter holds promise, not only structurally, but also from the aspects of transportation and assembly. Hence, the usefulness of shelters that use steel was shown experimentally. However, shelter construction should be suitable for the target environment.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3267
Author(s):  
Ramon C. F. Araújo ◽  
Rodrigo M. S. de Oliveira ◽  
Fernando S. Brasil ◽  
Fabrício J. B. Barros

In this paper, a novel image denoising algorithm and novel input features are proposed. The algorithm is applied to phase-resolved partial discharge (PRPD) diagrams with a single dominant partial discharge (PD) source, preparing them for automatic artificial-intelligence-based classification. It was designed to mitigate several sources of distortions often observed in PRPDs obtained from fully operational hydroelectric generators. The capabilities of the denoising algorithm are the automatic removal of sparse noise and the suppression of non-dominant discharges, including those due to crosstalk. The input features are functions of PD distributions along amplitude and phase, which are calculated in a novel way to mitigate random effects inherent to PD measurements. The impact of the proposed contributions was statistically evaluated and compared to classification performance obtained using formerly published approaches. Higher recognition rates and reduced variances were obtained using the proposed methods, statistically outperforming autonomous classification techniques seen in earlier works. The values of the algorithm’s internal parameters are also validated by comparing the recognition performance obtained with different parameter combinations. All typical PD sources described in hydro-generators PD standards are considered and can be automatically detected.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 773
Author(s):  
Y.H. Guo ◽  
Li Lin ◽  
Donghui Zhang ◽  
Lili Liu ◽  
M.K. Lei

Heat-affected zone (HAZ) of welding joints critical to the equipment safety service are commonly repeatedly welded in industries. Thus, the effects of repeated welding up to six times on the microstructure and mechanical properties of HAZ for AISI 304N austenitic stainless steel specimens were investigated by a Gleeble simulator. The temperature field of HAZ was measured by in situ thermocouples. The as-welded and one to five times repeated welding were assigned as-welded (AW) and repeated welding 1–5 times (RW1–RW5), respectively. The austenitic matrices with the δ-ferrite were observed in all specimens by the metallography. The δ-ferrite content was also determined using magnetic and metallography methods. The δ-ferrite had a lathy structure with a content of 0.69–3.13 vol.%. The austenitic grains were equiaxial with an average size of 41.4–47.3 μm. The ultimate tensile strength (UTS) and yield strength (YS) mainly depended on the δ-ferrite content; otherwise, the impact energy mainly depended on both the austenitic grain size and the δ-ferrite content. The UTS of the RW1–RW3 specimens was above 550 MPa following the American Society of Mechanical Engineers (ASME) standard. The impact energy of all specimens was higher than that in ASME standard at about 56 J. The repeated welding up to three times could still meet the requirements for strength and toughness of welding specifications.


2013 ◽  
Vol 690-693 ◽  
pp. 186-192
Author(s):  
Ho Hua Chung ◽  
Tsong Hsin Chen

This study concerned the influence of the material strength, ductility and impact energy and the relationship of the broken section profile vs. ductile transition brittle where the steel material was treated under different tempering temperature and hardness. Generally after the steel materials, 10B35 coil wire materials which was generally applied to form screws, was treated by quenching and tempering, its hardness ranged from HRC30 to HRC45. The results showed that the elongation rate beyond 20.4% would be proportional to the impact energy with linear relation, but with reverse proportion to the hardness value. The brittle-tough point of the hardness was set around HRC37 after heat treatment in order to balance the strength and the toughness. In addition, the coil wire materials were analyzed from broken section materials showing good toughness; this represented that the area of the cross section radiation layer due to ductile fracture would largely increase. On the contrary, the wire material test fragment with bad toughness represented that the area of the shear layer due to brittle fracture would largely increase as well. As to that material, if its hardness was greater than or equal to HRC37, that material would have an excellent turning danger from transition. At the same time, when the tempering temperature of the wire steel material was set under 4600C and its corresponding central hardness was about HRC37, the distance between two cementite phase layers suddenly increased. This result leaded to the reason why the wire material test fragment was turned into brittleness from ductility. Therefore, when the fastener was manufactured under tempering treatment, avoiding the tempering brittleness temperature range was necessary.


Author(s):  
Shamsoon Fareed ◽  
Ian May

Accidental loads, for example, due to heavy dropped objects, impact from the trawl gear and anchors of fishing vessels can cause damage to pipelines on the sea bed. The amount of damage will depend on the impact energy. The indentation will be localized at the contact area of the pipe and the impacting object, however, an understanding of the extent of the damage due to an impact is required so that if one should occur in practice an assessment can be made to determine if remedial action needs to be taken to ensure that the pipeline is still serviceable. There are a number of parameters, including the pipe cross section and impact energy, which influence the impact behaviour of a pipe. This paper describes the response, and assesses the damage, of mild steel pipes under high mass low velocity impacts. For this purpose full scale impacts tests were carried out on mild steel pipe having diameter of 457 mm, thickness of 25.4 mm and length of 2000 mm. The pipe was restrained along the base and a 2 tonnes mass with sharp impactor having a vertical downward velocity of 3870 mm/sec was used to impact the pipe transversely with an impact energy of 16 kJ. It was found from the impact tests that a smooth indentation was produced in the pipe. The impact tests were then used for validation of the non-linear dynamic implicit analyses using the finite element analysis software ABAQUS. Deformations at the impact zone, the rebound velocity, etc, recorded in the tests and the results of the finite element analysis were found to be in good agreement. The impact tests and finite element analyses described in this paper will help to improve the understanding of the response of steel pipes under impact loading and can be used as a benchmark for further finite element modelling of impacts on pipes.


Sign in / Sign up

Export Citation Format

Share Document