Study of Device Performance of Dual Metal Gate Silicon on Insulator MOSFET Adopting Various Dielectric Materials in Gate Oxide

Author(s):  
Anjan Paul ◽  
Piyali Saha ◽  
Tiya Dey Malakar
2021 ◽  
Author(s):  
Amit Kumar ◽  
Anil Kumar Rajput ◽  
Manisha Pattanaik ◽  
Pankaj Srivast

Abstract In the research paper, the semi-analytical modelling is done for low drain-induced barrier lowering (DIBL) dual-metal gate all around FET (DM GAAFET). Vacuum and silicon nitride are considered in the act of the gate oxide material near drain region for dual-metal vacuum oxide gate all around FET (DM-VO GAAFET) and dual-metal nitride oxide gate all around FET (DM-NO GAAFET) respectively, in which surface potential, threshold voltage, and DIBL are modelled for both the devices. The proposed models are validated by comparing DM-NO GAAFET with DM-VO GAAFET. DM-NO GAAFET shows the better device performance than DM-VO GAAFET as the threshold voltage increased by 10% and DIBL decreased by 50% in simulated as well as analytical results. The obtained results are having very close agreement with simulated results for both the GAAFETs.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Anjali Priya ◽  
Nilesh Anand Srivastava ◽  
Ram Awadh Mishra

In this paper, a comparative analysis of nanoscaled triple metal gate (TMG) recessed-source/drain (Re-S/D) fully depleted silicon-on-insulator (FD SOI) MOSFET has been presented for the design of the pseudo-NMOS inverter in the nanometer regime. For this, firstly, an analytical modeling of threshold voltage has been proposed in order to investigate the short channel immunity of the studied device and also verified against simulation results. In this structure, the novel concept of backchannel inversion has been utilized for the study of device performance. The threshold voltage has been analyzed by varying the parameters of the device like the ratio of metal gate length and the recessed-source/drain thickness for TMG Re-S/D SOI MOSFET. Drain-induced barrier lowering (DIBL) has also been explored in terms of recessed-source/drain thickness and the metal gate length ratio to examine short channel effects (SCEs). For the exact estimation of results, the comparison of the existing multimetal gate structures with TMG Re-S/D SOI MOSFET has also been taken under study in terms of electrostatic performance, i.e., threshold voltage, subthreshold slope, and on-off current ratio. These structures are investigated with the TCAD numerical simulator from Silvaco ATLAS. Furthermore, for the first time, TMG Re-S/D FD SOI MOSFET-based pseudo-NMOS inverter has been designed to observe the device performance at circuit levels. It has been found that the device offers high noise immunity with optimum switching characteristics, and the propagation delay of the studied circuit is recorded as 0.43 ps.


2009 ◽  
Vol 53 (3) ◽  
pp. 256-265 ◽  
Author(s):  
Rathnamala Rao ◽  
Guruprasad Katti ◽  
Dnyanesh S. Havaldar ◽  
Nandita DasGupta ◽  
Amitava DasGupta

2017 ◽  
Vol 27 (04) ◽  
pp. 1850063 ◽  
Author(s):  
Rajneesh Sharma ◽  
Rituraj S. Rathore ◽  
Ashwani K. Rana

The fully depleted Silicon-On-Insulator MOSFETs (FD-SOI) have shown high immunity to short channel effects compared to conventional bulk MOSFETs. The inclusion of gate underlap in SOI structure further improves the device performance in nanoscale regime by reducing drain induced barrier lowering and leakage current ([Formula: see text]). However, the gate underlap also results in reduced ON current ([Formula: see text]) due to increased effective channel length. The use of high-[Formula: see text] material as a spacer region helps to achieve the higher [Formula: see text] but at the cost of increased effective gate capacitance ([Formula: see text]) which degrades the device performance. Thus, the impact of high-[Formula: see text] spacer on the performance of underlap SOI MOSFET (underlap-SOI) is studied in this paper. To fulfil this objective, we have analyzed the performance parameters such as [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text]/[Formula: see text] ratio and intrinsic transistor delay (CV/I) with respect to the variation of device parameters. Various dielectric materials are compared to optimize the [Formula: see text]/[Formula: see text] ratio and CV/I for nanoscale underlap-SOI device. Results suggest that the HfO2 of 10[Formula: see text]nm length is optimum value to enhance device performance. Further, the higher underlap length is needed to offset the exponential increase in [Formula: see text] especially below 20[Formula: see text]nm gate length.


2021 ◽  
Author(s):  
Priyanka Karmakar ◽  
P K Sahu

Abstract A Silicon based Vertical Dual metal Double gate Tunnel FET (Si-VDMDGTFET) has been proposed and simulated in Sentaurus TCAD tool with improved DC and analog/RF characteristics. The vertical In-line tunneling dominates in the proposed device which results in better subthreshold slope (SS). The vertical in-line tunneling tunes the tunneling barrier and eventually controls the ON current. The dual metal gate and the heterogeneous gate stack oxide within the proposed device design gives the mouldability for controlling and improving the DC characteristics such as ON current, OFF current. The analog/RF behaviour of the proposed device has been calculated and compared with conventional lateral Silicon based dual metal double gate Tunnel FET furthermore it is seen that the proposed device outperforms the conventional lateral device.


2005 ◽  
Vol 8 (12) ◽  
pp. G333 ◽  
Author(s):  
Muhammad Mustafa Hussain ◽  
Naim Moumen ◽  
Joel Barnett ◽  
Jason Saulters ◽  
David Baker ◽  
...  

2001 ◽  
Vol 664 ◽  
Author(s):  
C. Y. Wang ◽  
E. H. Lim ◽  
H. Liu ◽  
J. L. Sudijono ◽  
T. C. Ang ◽  
...  

ABSTRACTIn this paper the impact of the ESL (Etch Stop layer) nitride on the device performance especially the threshold voltage (Vt) has been studied. From SIMS analysis, it is found that different nitride gives different H concentration, [H] in the Gate oxide area, the higher [H] in the nitride film, the higher H in the Gate Oxide area and the lower the threshold voltage. It is also found that using TiSi instead of CoSi can help to stop the H from diffusing into Gate Oxide/channel area, resulting in a smaller threshold voltage drift for the device employed TiSi. Study to control the [H] in the nitride film is also carried out. In this paper, RBS, HFS and FTIR are used to analyze the composition changes of the SiN films prepared using Plasma enhanced Chemical Vapor deposition (PECVD), Rapid Thermal Chemical Vapor Deposition (RTCVD) with different process parameters. Gas flow ratio, RF power and temperature are found to be the key factors that affect the composition and the H concentration in the film. It is found that the nearer the SiN composition to stoichiometric Si3N4, the lower the [H] in SiN film because there is no excess silicon or nitrogen to be bonded with H. However the lowest [H] in the SiN film is limited by temperature. The higher the process temperature the lower the [H] can be obtained in the SiN film and the nearer the composition to stoichiometric Si3N4.


2012 ◽  
Vol 195 ◽  
pp. 128-131 ◽  
Author(s):  
Hun Hee Lee ◽  
Min Sang Yun ◽  
Hyun Wook Lee ◽  
Jin Goo Park

As the feature size of semiconductor device shrinks continuously, various high-K metals for 3-D structures have been applied to improve the device performance, such as high speed and low power consumption. Metal gate fabrication requires the removal of metal and polymer residues after etching process without causing any undesired etching and corrosion of metals. The conventional sulfuric-peroxide mixture (SPM) has many disadvantages like the corrosion of metals, environmental issues etc., DSP+(dilute sulfuric-peroxide-HF mixture) chemical is currently used for the removal of post etch residues on device surface, to replace the conventional SPM cleaning [. Due to the increased usage of metal gate in devices in recent times, the application of DSP+chemicals for cleaning processes also increases [.


Sign in / Sign up

Export Citation Format

Share Document