Potential of near-infrared hyperspectral imaging spectroscopy to quantify water content in biscuits

Author(s):  
Eloise Lancelot ◽  
Philippe Courcoux ◽  
Sylvie Chevallier ◽  
Alain Le-Bail ◽  
Benoit Jaillais
2020 ◽  
Vol 28 (3) ◽  
pp. 140-147
Author(s):  
Eloïse Lancelot ◽  
Philippe Courcoux ◽  
Sylvie Chevallier ◽  
Alain Le-Bail ◽  
Benoît Jaillais

The possibility of using near infrared hyperspectral imaging spectroscopy to quantify the water content in commercial biscuits was investigated. Principal component analysis was successfully applied to hyperspectral images of commercial biscuits to monitor their water contents. Variables were selected and water contents quantified using analysis of variance, followed by multiple linear regression, and the results were compared with those obtained with variable importance in projection partial least squares. Initially equal to 212, the number of variables after application of analysis of variance was equal to 10. Analysis of variance–multiple linear regression gave better results: the coefficient of determination (R2) was higher than 0.92 and the root mean square error of validation was less than 0.015. The “prediction images” obtained were very relevant and can be used to study biscuit defects. The methodology developed could be implemented at the industrial level for biscuit quality control and for online monitoring of the uniform distribution of water in the superficial layer of biscuits.


2013 ◽  
Vol 67 (11) ◽  
pp. 1302-1307 ◽  
Author(s):  
Sakura Higa ◽  
Hikaru Kobori ◽  
Satoru Tsuchikawa

Author(s):  
Aoife Gowen ◽  
Jun-Li Xu ◽  
Ana Herrero-Langreo

Applications of hyperspectral imaging (HSI) to the quantitative and qualitative measurement of samples have grown widely in recent years, due mainly to the improved performance and lower cost of imaging spectroscopy instrumentation. Data sampling is a crucial yet often overlooked step in hyperspectral image analysis, which impacts the subsequent results and their interpretation. In the selection of pixel spectra for the calibration of classification models, the spatial information in HSI data can be exploited. In this paper, a variety of sampling strategies for selection of pixel spectra are presented, exemplified through five case studies. The strategies are compared in terms of the proportion of global variability captured, practicality and predictive model performance. The use of variographic analysis as a guide to the spatial segmentation prior to sampling leads to the selection of representative subsets while reducing the variation in model performance parameters over repeated random selection.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1052
Author(s):  
Costanza Cucci ◽  
Olga De Pascale ◽  
Giorgio S. Senesi

Fiber optics reflectance spectroscopy (FORS) and visible and near-infrared (VNIR) hyperspectral imaging (HSI) were applied to assess and control the laser cleaning process of a deeply darkened limestone surface collected from the historic entrance gate of Castello Svevo, Bari, Italy. Both techniques enabled us to verify the different degree of removal of a thick deposit of black crust from the surface of the walls. Results obtained were in good agreement with those of previous studies of the elemental composition achieved by application of laser-induced breakdown spectroscopy (LIBS). Coupling FORS and VNIR-HSI provided important information on the optimal conditions to evaluate the conservation status and determine the more appropriate level of cleaning restoration, thus avoiding over- and/or under-cleaning. Imaging spectroscopy was used to obtain maps of areas featuring the same or different spectral characteristics, so to achieve a sufficient removal of unwanted layers, without modifying the surface underneath, and to increase the efficiency of traditional cleaning techniques. The performance of the combined non-invasive approach used in this work shows promise for further applications to other types of rocks and highlights the potential for in situ assessment of the laser cleaning process based on reflectance spectroscopy.


Author(s):  
Damien Eylenbosch ◽  
Benjamin Dumont ◽  
Vincent Baeten ◽  
Bernard Bodson ◽  
Pierre Delaplace ◽  
...  

Leghaemoglobin content in nodules is closely related to the amount of nitrogen fixed by the legume–rhizobium symbiosis. It is, therefore, commonly measured in order to assess the effect of growth-promoting parameters such as fertilisation on the symbiotic nitrogen fixation efficiency of legumes. The cyanmethaemoglobin method is a reference method in leghaemoglobin content quantification, but this method is time-consuming, requires accurate and careful technical operations and uses cyanide, a toxic reagent. As a quicker, simpler and non-destructive alternative, a method based on near infrared (NIR) hyperspectral imaging was tested to quantify leghaemoglobin in dried nodules. Two approaches were evaluated: (i) the partial least squares (PLS) approach was applied to the full spectrum acquired with the hyperspectral device and (ii) the potential of multispectral imaging was also tested through the preselection of the most relevant wavelengths and the building of a multiple linear regression model. The PLS approach was tested on mean spectra acquired from samples containing several nodules and acquired separately from individual nodules. Peas (Pisum sativum L.) were cultivated in a greenhouse. The nodules were harvested on four different dates in order to obtain variations in leghaemoglobin content. The leghaemoglobin content measured with the cyanmethaemoglobin method in fresh nodules ranged between 1.4 and 4.2 mg leghaemoglobin g–1 fresh nodule. A PLS regression model was calibrated on leghaemoglobin content measured with the reference method and mean NIR spectra of dried nodules acquired with a hyperspectral imaging device. On a validation dataset, the PLS model predicted the leghaemoglobin content in nodule samples well (R2 = 0.90, root mean square error of prediction = 0.26). The multispectral approach showed similar performance. Applied to individual nodules, the PLS model highlighted a wide variability of leghaemoglobin content in nodules harvested from the same plant. These results show that NIR hyperspectral imaging could be used as a rapid and safe method to quantify leghaemoglobin in pea nodules.


Author(s):  
Chih-Cheng Pai ◽  
Yang-Chu Chen ◽  
Keng-Hao Liu ◽  
Yuan-Hsun Tsai ◽  
Po-Chi Hu ◽  
...  

2020 ◽  
Author(s):  
L. Granlund ◽  
M. Keinänen ◽  
T. Tahvanainen

Abstract Aims Hyperspectral imaging (HSI) has high potential for analysing peat cores, but methodologies are deficient. We aimed for robust peat type classification and humification estimation. We also explored other factors affecting peat spectral properties. Methods We used two laboratory setups: VNIR (visible to near-infrared) and SWIR (shortwave infrared) for high resolution imaging of intact peat profiles with fen-bog transitions. Peat types were classified with support vector machines, indices were developed for von Post estimation, and K-means clustering was used to analyse stratigraphic patterns in peat quality. With separate experiments, we studied spectral effects of drying and oxidation. Results Despite major effects, oxidation and water content did not impede robust HSI classification. The accuracy between Carex peat and Sphagnum peat in validation was 80% with VNIR and 81% with SWIR data. The spectral humification indices had accuracies of 82% with VNIR and 56%. Stratigraphic HSI patterns revealed that 36% of peat layer shifts were inclined by over 20 degrees. Spectral indices were used to extrapolate visualisations of element concentrations. Conclusions HSI provided reliable information of basic peat quality and was useful in visual mapping, that can guide sampling for other analyses. HSI can manage large amounts of samples to widen the scope of detailed analysis beyond single profiles and it has wide potential in peat research beyond the exploratory scope of this paper. We were able to confirm the capacity of HSI to reveal shifts of peat quality, connected to ecosystem-scale change.


Sign in / Sign up

Export Citation Format

Share Document