Identification of the Flavobacterium johnsoniae cysteate‐fatty acyl transferase required for capnine synthesis and for efficient gliding motility

Author(s):  
Miguel Ángel Vences‐Guzmán ◽  
Rafael Peña‐Miller ◽  
Nancy Adriana Hidalgo‐Aguilar ◽  
Maritza Lorena Vences‐Guzmán ◽  
Ziqiang Guan ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keiko Sato ◽  
Masami Naya ◽  
Yuri Hatano ◽  
Yoshio Kondo ◽  
Mari Sato ◽  
...  

AbstractColony spreading of Flavobacterium johnsoniae is shown to include gliding motility using the cell surface adhesin SprB, and is drastically affected by agar and glucose concentrations. Wild-type (WT) and ΔsprB mutant cells formed nonspreading colonies on soft agar, but spreading dendritic colonies on soft agar containing glucose. In the presence of glucose, an initial cell growth-dependent phase was followed by a secondary SprB-independent, gliding motility-dependent phase. The branching pattern of a ΔsprB colony was less complex than the pattern formed by the WT. Mesoscopic and microstructural information was obtained by atmospheric scanning electron microscopy (ASEM) and transmission EM, respectively. In the growth-dependent phase of WT colonies, dendritic tips spread rapidly by the movement of individual cells. In the following SprB-independent phase, leading tips were extended outwards by the movement of dynamic windmill-like rolling centers, and the lipoproteins were expressed more abundantly. Dark spots in WT cells during the growth-dependent spreading phase were not observed in the SprB-independent phase. Various mutations showed that the lipoproteins and the motility machinery were necessary for SprB-independent spreading. Overall, SprB-independent colony spreading is influenced by the lipoproteins, some of which are involved in the gliding machinery, and medium conditions, which together determine the nutrient-seeking behavior.


2001 ◽  
Vol 183 (14) ◽  
pp. 4167-4175 ◽  
Author(s):  
David W. Hunnicutt ◽  
Mark J. McBride

ABSTRACT Cells of Flavobacterium johnsoniae move over surfaces by a process known as gliding motility. The mechanism of this form of motility is not known. Cells of F. johnsoniaepropel latex spheres along their surfaces, which is thought to be a manifestation of the motility machinery. Three of the genes that are required for F. johnsoniae gliding motility,gldA, gldB, and ftsX, have recently been described. Tn4351 mutagenesis was used to identify another gene, gldD, that is needed for gliding. Tn4351-induced gldD mutants formed nonspreading colonies, and cells failed to glide. They also lacked the ability to propel latex spheres and were resistant to bacteriophages that infect wild-type cells. Introduction of wild-type gldD into the mutants restored motility, ability to propel latex spheres, and sensitivity to bacteriophage infection. gldD codes for a cytoplasmic membrane protein that does not exhibit strong sequence similarity to proteins of known function. gldE, which lies immediately upstream ofgldD, encodes another cytoplasmic membrane protein that may be involved in gliding motility. Overexpression ofgldE partially suppressed the motility defects of agldB point mutant, suggesting that GldB and GldE may interact. GldE exhibits sequence similarity to Borrelia burgdorferi TlyC and Salmonella enterica serovar Typhimurium CorC.


2005 ◽  
Vol 187 (20) ◽  
pp. 6943-6952 ◽  
Author(s):  
Timothy F. Braun ◽  
Manjeet K. Khubbar ◽  
Daad A. Saffarini ◽  
Mark J. McBride

ABSTRACT Cells of Flavobacterium johnsoniae glide rapidly over surfaces. The mechanism of F. johnsoniae gliding motility is not known. Eight gld genes required for gliding motility have been described. Disruption of any of these genes results in complete loss of gliding motility, deficiency in chitin utilization, and resistance to bacteriophages that infect wild-type cells. Two modified mariner transposons, HimarEm1 and HimarEm2, were constructed to allow the identification of additional motility genes. HimarEm1 and HimarEm2 each transposed in F. johnsoniae, and nonmotile mutants were identified and analyzed. Four novel motility genes, gldK, gldL, gldM, and gldN, were identified. GldK is similar in sequence to the lipoprotein GldJ, which is required for gliding. GldL, GldM, and GldN are not similar in sequence to proteins of known function. Cells with mutations in gldK, gldL, gldM, and gldN were defective in motility and chitin utilization and were resistant to bacteriophages that infect wild-type cells. Introduction of gldA, gldB, gldD, gldFG, gldH, gldI, and gldJ and the region spanning gldK, gldL, gldM, and gldN individually into 50 spontaneous and chemically induced nonmotile mutants restored motility to each of them, suggesting that few additional F. johnsoniae gld genes remain to be identified.


2016 ◽  
Vol 198 (12) ◽  
pp. 1743-1754 ◽  
Author(s):  
Yongtao Zhu ◽  
Mark J. McBride

ABSTRACTGliding motility is common in members of the phylumBacteroidetes, includingFlavobacterium johnsoniaeandCellulophaga algicola.F. johnsoniaegliding has been extensively studied and involves rapid movement of the cell surface adhesin SprB. Genetic analysis ofC. algicolaallowed a comparative analysis of gliding. Sixty-threeHimarEm1-induced mutants that formed nonspreading colonies were characterized. Each had an insertion in an ortholog of anF. johnsoniaemotility gene, highlighting similarities between the motility systems. Differences were also observed.C. algicolalacks orthologs of theF. johnsoniaemotility genesgldA,gldF, andgldGthat are thought to encode the components of an ATP-binding cassette (ABC) transporter. In addition, mutations in any of 12F. johnsoniae gldgenes result in complete loss of motility, whereas allC. algicola gldmutants retained slight residual motility. This may indicate thatC. algicolahas multiple motility systems, that the motility proteins exhibit partial redundancy of function, or that essential components of the motility machinery of bothC. algicolaandF. johnsoniaeremain to be discovered.IMPORTANCEThe development of genetic tools forC. algicolaand comparative analysis ofF. johnsoniaeandC. algicolamotility mutants identified similarities and differences between their gliding motility machineries. Gliding motility is common in the phylumBacteroidetes. Proteins that are important for gliding in bothC. algicolaandF. johnsoniaeare potential core components of theBacteroidetesgliding motility machinery.


2007 ◽  
Vol 73 (11) ◽  
pp. 3536-3546 ◽  
Author(s):  
Gary Xie ◽  
David C. Bruce ◽  
Jean F. Challacombe ◽  
Olga Chertkov ◽  
John C. Detter ◽  
...  

ABSTRACT The complete DNA sequence of the aerobic cellulolytic soil bacterium Cytophaga hutchinsonii, which belongs to the phylum Bacteroidetes, is presented. The genome consists of a single, circular, 4.43-Mb chromosome containing 3,790 open reading frames, 1,986 of which have been assigned a tentative function. Two of the most striking characteristics of C. hutchinsonii are its rapid gliding motility over surfaces and its contact-dependent digestion of crystalline cellulose. The mechanism of C. hutchinsonii motility is not known, but its genome contains homologs for each of the gld genes that are required for gliding of the distantly related bacteroidete Flavobacterium johnsoniae. Cytophaga-Flavobacterium gliding appears to be novel and does not involve well-studied motility organelles such as flagella or type IV pili. Many genes thought to encode proteins involved in cellulose utilization were identified. These include candidate endo-β-1,4-glucanases and β-glucosidases. Surprisingly, obvious homologs of known cellobiohydrolases were not detected. Since such enzymes are needed for efficient cellulose digestion by well-studied cellulolytic bacteria, C. hutchinsonii either has novel cellobiohydrolases or has an unusual method of cellulose utilization. Genes encoding proteins with cohesin domains, which are characteristic of cellulosomes, were absent, but many proteins predicted to be involved in polysaccharide utilization had putative D5 domains, which are thought to be involved in anchoring proteins to the cell surface.


2020 ◽  
Vol 6 (10) ◽  
pp. eaay6616 ◽  
Author(s):  
Abhishek Shrivastava ◽  
Howard C. Berg

The gliding bacterium Flavobacterium johnsoniae is known to have an adhesin, SprB, that moves along the cell surface on a spiral track. Following viscous shear, cells can be tethered by the addition of an anti-SprB antibody, causing spinning at 3 Hz. Labeling the type 9 secretion system (T9SS) with a YFP fusion of GldL showed a yellow fluorescent spot near the rotation axis, indicating that the motor driving the motion is associated with the T9SS. The distance between the rotation axis and the track (90 nm) was determined after adding a Cy3 label for SprB. A rotary motor spinning a pinion of radius 90 nm at 3 Hz would cause a spot on its periphery to move at 1.5 μm/s, the gliding speed. We suggest the pinion drives a flexible tread that carries SprB along a track fixed to the cell surface. Cells glide when this adhesin adheres to the solid substratum.


2009 ◽  
Vol 192 (5) ◽  
pp. 1201-1211 ◽  
Author(s):  
Ryan G. Rhodes ◽  
Mudiarasan Napoleon Samarasam ◽  
Abhishek Shrivastava ◽  
Jessica M. van Baaren ◽  
Soumya Pochiraju ◽  
...  

ABSTRACT Cells of the gliding bacterium Flavobacterium johnsoniae move rapidly over surfaces. Mutations in gldN cause a partial defect in gliding. A novel bacteriophage selection strategy was used to aid construction of a strain with a deletion spanning gldN and the closely related gene gldO in an otherwise wild-type F. johnsoniae UW101 background. Bacteriophage transduction was used to move a gldN mutation into F. johnsoniae UW101 to allow phenotypic comparison with the gldNO deletion mutant. Cells of the gldN mutant formed nonspreading colonies on agar but retained some ability to glide in wet mounts. In contrast, cells of the gldNO deletion mutant were completely nonmotile, indicating that cells require GldN, or the GldN-like protein GldO, to glide. Recent results suggest that Porphyromonas gingivalis PorN, which is similar in sequence to GldN, has a role in protein secretion across the outer membrane. Cells of the F. johnsoniae gldNO deletion mutant were defective in localization of the motility protein SprB to the cell surface, suggesting that GldN may be involved in secretion of components of the motility machinery. Cells of the gldNO deletion mutant were also deficient in chitin utilization and were resistant to infection by bacteriophages, phenotypes that may also be related to defects in protein secretion.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Li ◽  
Amanda Hurley ◽  
Wei Hu ◽  
Jay W. Warrick ◽  
Gabriel L. Lozano ◽  
...  

AbstractBacterial biofilms are aggregates of surface-associated cells embedded in an extracellular polysaccharide (EPS) matrix, and are typically stationary. Studies of bacterial collective movement have largely focused on swarming motility mediated by flagella or pili, in the absence of a biofilm. Here, we describe a unique mode of collective movement by a self-propelled, surface-associated biofilm-like multicellular structure. Flavobacterium johnsoniae cells, which move by gliding motility, self-assemble into spherical microcolonies with EPS cores when observed by an under-oil open microfluidic system. Small microcolonies merge, creating larger ones. Microscopic analysis and computer simulation indicate that microcolonies move by cells at the base of the structure, attached to the surface by one pole of the cell. Biochemical and mutant analyses show that an active process drives microcolony self-assembly and motility, which depend on the bacterial gliding apparatus. We hypothesize that this mode of collective bacterial movement on solid surfaces may play potential roles in biofilm dynamics, bacterial cargo transport, or microbial adaptation. However, whether this collective motility occurs on plant roots or soil particles, the native environment for F. johnsoniae, is unknown.


2020 ◽  
Vol 8 (8) ◽  
pp. 1173 ◽  
Author(s):  
Dhana G. Gorasia ◽  
Paul D. Veith ◽  
Eric C. Reynolds

The type IX secretion system (T9SS) is specific to the Bacteroidetes phylum. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilises the T9SS to transport many proteins—including its gingipain virulence factors—across the outer membrane and attach them to the cell surface. Additionally, the T9SS is also required for gliding motility in motile organisms, such as Flavobacterium johnsoniae. At least nineteen proteins have been identified as components of the T9SS, including the three transcription regulators, PorX, PorY and SigP. Although the components are known, the overall organisation and the molecular mechanism of how the T9SS operates is largely unknown. This review focusses on the recent advances made in the structure, function, and organisation of the T9SS machinery to provide further insight into this highly novel secretion system.


2008 ◽  
Vol 190 (8) ◽  
pp. 2851-2857 ◽  
Author(s):  
Shawn S. Nelson ◽  
Sreelekha Bollampalli ◽  
Mark J. McBride

ABSTRACT Cells of the gliding bacterium Flavobacterium johnsoniae move rapidly over surfaces by an unknown mechanism. Transposon insertions in sprB resulted in cells that were defective in gliding. SprB is a highly repetitive 669-kDa cell surface protein, and antibodies against SprB inhibited the motility of wild-type cells. Polystyrene microspheres coated with antibodies against SprB attached to and were rapidly propelled along the cell surface, suggesting that SprB is one of the outermost components of the motility machinery. The movement of SprB along the cell surface supports a model of gliding motility in which motors anchored to the cell wall rapidly propel cell surface adhesins.


Sign in / Sign up

Export Citation Format

Share Document