Effect of dietary canthaxanthin and xanthophyll on growth, antioxidant capacity, body colour, and BCO2 , CAT and SOD2 gene expression in Chinese soft‐shelled turtle ( Pelodiscus sinensis )

2021 ◽  
Author(s):  
Pei Wang ◽  
Xianwen Zhou ◽  
Gang Xiong ◽  
Dan Zeng ◽  
Lingrui Ge ◽  
...  
2011 ◽  
Vol 107 (8) ◽  
pp. 1112-1118 ◽  
Author(s):  
Pei-Hsuan Tsai ◽  
Jun-Jen Liu ◽  
Chui-Li Yeh ◽  
Wan-Chun Chiu ◽  
Sung-Ling Yeh

There are close links among hyperglycaemia, oxidative stress and diabetic complications. Glutamine (GLN) is an amino acid with immunomodulatory properties. The present study investigated the effect of dietary GLN on oxidative stress-relative gene expressions and tissue oxidative damage in diabetes. There were one normal control (NC) and two diabetic groups in the present study. Diabetes was induced by an intraperitoneal injection of nicotinamide followed by streptozotocin (STZ). Rats in the NC group were fed a regular chow diet. In the two diabetic groups, one group (diabetes mellitus, DM) was fed a common semi-purified diet while the other group received a diet in which part of the casein was replaced by GLN (DM-GLN). GLN provided 25 % of total amino acid N. The experimental groups were fed the respective diets for 8 weeks, and then the rats were killed for further analysis. The results showed that blood thioredoxin-interacting protein (Txnip) mRNA expression in the diabetic groups was higher than that in the NC group. Compared with the DM group, the DM-GLN group had lower glutamine fructose-6-phosphate transaminase 1, a receptor of advanced glycation end products, and Txnip gene expressions in blood mononuclear cells. The total antioxidant capacity was lower and antioxidant enzyme activities were altered by the diabetic condition. GLN supplementation increased antioxidant capacity and normalised antioxidant enzyme activities. Also, the renal nitrotyrosine level and Txnip mRNA expression were lower when GLN was administered. These results suggest that dietary GLN supplementation decreases oxidative stress-related gene expression, increases the antioxidant potential and may consequently attenuate renal oxidative damage in rats with STZ-induced diabetes.


2021 ◽  
Author(s):  
Yanpeng Dong ◽  
Sirun Chen ◽  
Yalei Liu ◽  
Zimei Li ◽  
Xinlin Jia ◽  
...  

Abstract Background Dietary 2-hydroxy-4-methylselenobutanoic acid (HMSeBA) supplementation can exert antioxidant effects in poultry, pigs and weaned pigs. However, it is unknown whether HMSeBA could improve the development of follicle by anti-oxidize effects in gilt. This study was conducted to evaluate the effects of dietary HMSeBA supplementation on the follicle development in gilt. A total of 36 gilts were randomly fed the control diet (CON, negative control), Na2SeO3 diet containing 0.3 mg Se/kg (positive control) or the HMSeBA diet containing 0.3 mg Se/kg from weaning to the 19th day after the second estrus. In another study, the effect of HMSeBA on the cells viability, proliferation, release of 17βestradiol (E2 ) and antioxidant capacity were investigated in the mouse ovarian granulosa cells in vitro. Results Results showed that HMSeBA group increased the average daily body weight gain (ADG) and decreased the ratio of feed: gain during day 120 to 176 in gilts ( P < 0.05). The selenium (HMSeBA and Na 2 SeO 3 ) increased the weight of uterine at the third estrus. There was no effect of HMSeBA on the number of large follicles (diameter >5mm), but HMSeBA decreased the gene expression of growth differentiation factor-9 ( GDF-9 ) and bone morphogenetic protein-15 ( BMP-15 ) in cumulus-oocyte complexes (COCs). HMSeBA group increased the total selenium content in serum ( P < 0.05) and liver ( P < 0.01) and tended to increase the total selenium content in ovary ( P = 0.08). HMSeBA group decreased the malondialdehyde (MDA) concentration in the serum, liver and ovary ( P < 0.05), increased the total antioxidant capacity (T-AOC) in the liver, thioredoxin reductase (TrxR) in the ovary ( P < 0.05) and increased the activity of GPx in the serum, liver and ovary ( P < 0.05). Na 2 SeO 3 supplementation decreased MDA and increased the T-AOC in liver, increased the T-SOD and TrxR in the ovary compared with control. At the transcription level, HMSeBA group increased the glutathione peroxidase 2 ( GPx2 ) and TrxR1 ( P < 0.05) expression in the liver, and increased the GPx1 expression ( P < 0.05) in the ovary of gilts compared with Na2SeO3 treatment. Besides, HMSeBA group increased the expressions of superoxide dismutase 1 ( SOD1 ) and Thioredoxin l ( Trx1 ) in the liver. In vitro experiment, HMSeBA improved granulosa cells’ proliferation and E2 secretion ( P < 0.05). HMSeBA and Na 2 SeO 3 both increased the T-AOC and decreased MDA in granulosa cells in vitro. Meanwhile, HMSeBA increased T-SOD, GPx, glutathione reductase (GR) and TrxR activity in granulosa cells in vitro. In addition, HMSeBA up-regulated SOD2 and GPx1 gene expression in the granulosa cells in vitro.Conclusion These results demonstrate directly, HMSeBA was more conducive to absorption and storage of selenium in the liver and ovary in gilt, and beneficial to exert the effect of HMSeBA on the antioxidant function in the liver and ovary of gilt. Moreover, HMSeBA has stronger antioxidant capacity in granular cells in vitro , which is more conducive to promoting follicle development. Therefore, the new type of organic selenium, HMSeBA, could be potentially useful for the control of reproductive processes in gilt.


2020 ◽  
Vol 124 (9) ◽  
pp. 903-911 ◽  
Author(s):  
Yufei Zhu ◽  
Shizhao Li ◽  
Yulan Duan ◽  
Zhouzheng Ren ◽  
Xin Yang ◽  
...  

AbstractThis study aimed to evaluate the effect of in ovo feeding (IOF) of vitamin C at embryonic age 11 (E11) on post-hatch performance, immune status and DNA methylation-related gene expression in broiler chickens. A total of 240 Arbor Acres breeder eggs (63 (sem 0·5) g) were randomly divided into two groups: normal saline and vitamin C (VC) groups. After incubation, newly hatched chicks from each group were randomly divided into six replicates with ten chicks per replicate. Hatchability, average daily feed intake (D21–42 and D1–42), and average daily gain and feed conversion ratio (D1–21) were improved by vitamin C treatment (P < 0·05). IOF of vitamin C increased vitamin C content (D1), total antioxidant capacity (D42), IgA (D1), IgM (D1 and D21), stimulation index for T lymphocyte (D35) and lysozyme activity (D21) in plasma (P < 0·05). On D21, vitamin C increased the splenic expression of IL-4 and DNMT1 and decreased IL-1β, Tet2, Tet3 and Gadd45β expression (P < 0·05). On D42, vitamin C increased the splenic expression of IL-4 and DNMT3A and decreased IFN-γ, Tet3, MBD4 and TDG expression (P < 0·05). In conclusion, the vitamin C via in ovo injection can be absorbed by broiler’s embryo and IOF of vitamin C at E11 improves the post-hatch performance and immune status and, to some extent, the antioxidant capacity of broiler chickens. The expression of enzyme-related DNA methylation and demethylation indicates that the level of DNA methylation may increase in spleen in the VC group and whether the fluctuating expression of pro- and anti-inflammatory cytokines is related to DNA methylation change remained to be further investigated.


2006 ◽  
Vol 25 (2) ◽  
pp. 242-249 ◽  
Author(s):  
Freddy J. Troost ◽  
Robert-Jan M. Brummer ◽  
Guido R. M. M. Haenen ◽  
Aalt Bast ◽  
Rachel I. van Haaften ◽  
...  

Iron-induced oxidative stress in the small intestine may alter gene expression in the intestinal mucosa. The present study aimed to determine which genes are mediated by an iron-induced oxidative challenge in the human small intestine. Eight healthy volunteers [22 yr(SD2)] were tested on two separate occasions in a randomized crossover design. After duodenal tissue sampling by gastroduodenoscopy, a perfusion catheter was inserted orogastrically to perfuse a 40-cm segment of the proximal small intestine with saline and, subsequently, with either 80 or 400 mg of iron as ferrous gluconate. After the intestinal perfusion, a second duodenal tissue sample was obtained. Thiobarbituric acid-reactive substances, an indicator of lipid peroxidation, in intestinal fluid samples increased significantly and dose dependently at 30 min after the start of perfusion with 80 or 400 mg of iron, respectively ( P < 0.001). During the perfusion with 400 mg of iron, the increase in thiobarbituric acid-reactive substances was accompanied by a significant, momentary rise in trolox equivalent antioxidant capacity, an indicator of total antioxidant capacity ( P < 0.05). The expression of 89 gene reporters was significantly altered by both iron interventions. Functional mapping showed that both iron dosages mediated six distinct processes. Three of those processes involved G-protein receptor coupled pathways. The other processes were associated with cell cycle, complement activation, and calcium channels. Iron administration in the small intestine induced dose-dependent lipid peroxidation and a momentary antioxidant response in the lumen, mediated the expression of at least 89 individual gene reporters, and affected at least six biological processes.


Sign in / Sign up

Export Citation Format

Share Document