Effects of thermal stress and hypoxia on skin mucus immune and stress responses in blue gourami ( Trichogaster trichopterus ) cultured in intensive recirculation aquaculture system and semi‐intensive systems

2021 ◽  
Author(s):  
Farzaneh Vakili ◽  
Zahra Roosta ◽  
Seyed Hossein Hoseinifar ◽  
Arash Akbarzadeh
2003 ◽  
Vol 86 (1-2) ◽  
pp. 139-156 ◽  
Author(s):  
Robin J. Rowbury

Biological thermometers are cellular components or structures which sense increasing temperatures, interaction of the thermometer and the thermal stress bringing about the switching-on of inducible responses, with gradually enhanced levels of response induction following gradually increasing temperatures. In enterobacteria, for studies of such thermometers, generally induction of heat shock protein (HSP) synthesis has been examined, with experimental studies aiming to establish (often indirectly) how the temperature changes which initiate HSP synthesis are sensed; numerous other processes and responses show graded induction as temperature is increased, and how the temperature changes which induce these are sensed is also of interest. Several classes of intracellular component and structure have been proposed as enterobacterial thermometers, with the ribosome and the DnaK chaperone being the most favoured, although for many of the proposed intracellular thermometers, most of the evidence for their functioning in this way is indirect. In contrast to the above, the studies reviewed here firmly establish that for four distinct stress responses, which are switched-on gradually as temperature increases, temperature changes are sensed by extracellular components (extracellular sensing components, ESCs) i.e. there is firm and direct evidence for the occurrence of extracellular thermometers. All four thermometers described here are proteins, which appear to be distinct and different from each other, and on sensing thermal stress are activated by it to four distinct extracellular induction components (EICs), which interact with receptors on the surface of organisms to induce the appropriate responses. It is predicted that many other temperature-induced processes, including the synthesis of HSPs, will be switched-on following the activation of similar extracellular thermometers by thermal stimuli.


2019 ◽  
Vol 3 (6) ◽  
pp. 6-10
Author(s):  
Siti Maryam Zainol ◽  

This research presents an improved and more effective approach for data acquisition of recirculation aquaculture system (RAS). The previous research, the system uses manual methods to take the important data from RAS and it wastes the time and also gets late response from the fish farmer if the data is not in the good condition. As a result, fog computing technology is applied to overcome all these problems and acts as advance data acquisition system to keep data safely by sharing the processed data in fog computing for every tanks and analyze the data to make an accurate control/decision in the real time. Besides, open source technology plus embedded system based will be integrated for this research because its benefits such as small size, low cost, light weight, portable, high efficiency and low power consumption. This research has achieved the objectives which are design a data collecting system for RAS, design a data processing system using fog computing and integrate, test and validate automatic data collection and processing strategy for recirculation aquaculture system (RAS). The data collecting system for RAS, RaspDAQ is developed by connecting Raspberry Pi 3 to temperature sensor (LM35DT) using analogue digital converter (ADC) MCP3002, water level sensor (HC-SR04), Rpi camera module, LEDs and buzzer. Software and program are built using Python and Apache server to run every functions of RaspDAQ. While third Raspberry Pi 3 is setup as data processing system, RaspFog using PHP, Apache and MySQL server. Both RaspDAQ and RaspFog are based on Raspbian operating system. After that, RaspDAQ1 and RaspDAQ2 are connected to RaspFog using WiFi technology to send sensors data in real time. The received data are stored and plotted using Highcharts.com graph. The data collecting system, RaspDAQ and data server and processor, RaspFog has been tested and validated. At the same time, users can see the graph output in the real time for temperature, water level sensor and real condition using Rpi camera module of RaspDAQ1 and RaspDAQ2 by browsing RaspFog website. From the observation, data has been transferred from RaspDAQ to RaspFog in a short duration which is less than 15 seconds. Consequently, the efficiency of data acquisition process has been improved from manual system to fog computing technology successfully.


2020 ◽  
Vol 72 (5) ◽  
pp. 1805-1812
Author(s):  
M.O. Pereira ◽  
A.V. Moraes ◽  
J.C.B. Rodhermel ◽  
J.D. Hess ◽  
L. Alves ◽  
...  

ABSTRACT The objective of this study was to evaluate the effects of dietary supplementation with different doses of Curcuma longa hydrolate on the hematological, immunological and zootechnical parameters of Nile tilapia cultivated in a recirculation system (RAS). Nile tilapia (Oreochromis niloticus) were used, distributed in 16 polyethylene boxes, divided into four treatments: 0.0%; 2.5%; 7.5% and 10.0% of Curcuma longa hydrolate, in quadruplicate. After 45 days of treatment, four fish per experimental unit were anesthetized to remove blood aliquot for hematological and immunological analyzes and dissect the liver to evaluate the hepatosomatic index and final biometry. In the haematological analysis, the fish fed with 2.5% had a higher number of leukocytes, monocytes and lymphocytes than control, while the doses of 7.5% and 10.0% did not differ. Antimicrobial activity showed a significant decrease as the dose of C. longa hydrolate increased. The other hematological, immunological, hepatosomatic index and zootechnical data did not differ between treatments. Thus, supplementation of the hydrolate of Curcuma longa at a dosage of 2.5%, improved and maintained blood-immune homeostasis parameters in these animals, being suggested for further studies.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Satish C. Boregowda ◽  
Robert E. Choate ◽  
Rodney Handy

The present study involves application of an open system entropy generation formulation to analyze human thermal stress responses. The time-series human thermal stress response data are obtained by conducting a simulation using a validated finite-element human thermal model (FEHTM). These simulated human thermal response data are used as an input to the entropy generation expression to obtain human entropy generation (HEG) values. The effects of variables such as air temperature, relative humidity, physical activity, and clothing on entropy generation are examined. A design of experiment (DOE) approach is utilized to study the interaction effects of air temperature and relative humidity on entropy generation. The study establishes the importance and utility of entropy generation as a holistic measure of human thermal physiological reaction to external and internal changes. This novel study has great potential for use in military medicine, rehabilitation, sports, and related applications.


2017 ◽  
Author(s):  
Joshua Louis Bonesso ◽  
William Leggat ◽  
Tracy Danielle Ainsworth

Elevated sea surface temperatures (SSTs) are linked to an increase in the frequency and severity of bleaching events due to temperatures exceeding corals’ upper thermal limits. The temperatures at which a breakdown of the coral-Symbiodinium endosymbiosis (coral bleaching) occurs are referred to as the upper thermal limits for the coral species. This breakdown of the endosymbiosis results in a reduction of corals’ nutritional uptake, growth, and tissue integrity. Periods of elevated sea surface temperature, thermal stress and coral bleaching are also linked to increased disease susceptibility and an increased frequency of storms which cause injury and physical damage to corals. Herein we aimed to determine the capacity of corals to regenerate and recover from injuries (removal of apical tips) sustained during periods of elevated sea surface temperatures which result in coral stress responses, but which do not result in coral bleaching (i.e. sub-bleaching thermal stress events). In this study, exposure of the species Acropora aspera to an elevated SST of 32°C (2°C below the bleaching threshold, 34°C) was found to result in reduced fluorescence of green fluorescent protein (GFP), reduced skeletal calcification and a lack of branch regrowth at the site of injury, compared to corals maintained under ambient SST conditions (26°C). Corals maintained under normal, ambient, sea surface temperatures expressed high GFP fluorescence at the injury site, underwent a rapid regeneration of the coral branch apical tip within 12 days of sustaining injury, and showed extensive regrowth of the coral skeleton. Taken together, our results have demonstrated that periods of sustained increased sea surface temperatures, below the corals’ bleaching threshold but above long-term summertime averages, impair coral recovery from damage, regardless of the onset or occurrence of coral bleaching .


2015 ◽  
Vol 181 (2) ◽  
pp. 191-203
Author(s):  
Olga P. Filippova ◽  
Svetlana V. Piyanova ◽  
Sergey E. Zuevsky

Dynamics of cytomorphological characteristics of oocytes in ovaries is considered for two sturgeon hybrids: besters of the breed Burtlevskaya Huso huso (Linnaeus) x Acipenser ruthenus (Linnaeus) and the breed Aksayskaya Acipenser ruthenus x ( Huso huso x Acipenser ruthenus ) on the experimental data obtained under controlled conditions in the aquatic complex in Moscow (Russia) in 2010-2012. Methods of intravital eggs extraction, ultrasound diagnostics, biopsy with the probe, anesthesia and histological analysis are applied. Structure of membrane is similar for straight sturgeon species and hybrids, but the membrane thickness and the term of its emergence on certain maturity stage are somewhat different, so the eggs of bester could be distinguished by the oocyte membrane thickness. Mean interspawning interval for the hybrids in conditions of recirculation aquaculture system at water temperature 20-21 °C is determined as 10-12 months.


2020 ◽  
Vol 12 (1) ◽  
pp. 299-310
Author(s):  
Yuni Puji Hastuti ◽  
Priyo Handoyo Wicaksono ◽  
Wildan Nurusallam ◽  
Siska Tridesianti ◽  
Yuli Siti Fatma ◽  
...  

The availability of shelters in a specific density is expected to increase the production of mud crabs (Scylla serrata) in a recirculation system. Shelter, as one of the abiotic factors, plays a pivotal role in reducing death caused by cannibalism of crab and suppressing the stress levels of biota. Recirculation Aquaculture System (RAS), with the culture box capacity 60 L supported by the shelters, is predicted to produce the best physiological and growth responses of mud crabs. This present study aims to evaluate the effect of shelter addition in the environmental recirculation system on the physiological responses and production of mud crabs S. serrata with a density of 10 crabs per one culture box containing 60 L of seawater. The research was set up with three treatments of shelter addition, i.e., two shelters (S2), four shelters (S4), six shelters (S6), and control without shelter (C). Results showed that S6 was the best treatment with a survival rate of 73.33 ± 5.8%, a specific growth rate of 0.886 ± 0.014%, the growth rate of carapace width 0.024 ± 0.004 cm/day, and the lowest feed conversion ratio than those of other treatments. S6 treatment significantly influenced the total hemocyte count of crabs at the early cultivation (P <0.05). Addition of six shelters could optimize the growth of mud crabs with a stocking density of 10 crabs in one culture box. 


2021 ◽  
Author(s):  
◽  
Anne Wietheger

<p>Coral bleaching, the loss of symbiotic dinoflagellate algae (genus Symbiodinium) and/or photosynthetic algal pigments from their coral host has become a regular occurrence in the last few decades due to increasing seawater temperatures. A key consideration in bleaching susceptibility is the symbiotic alga‘s physiology and its capacity to deal with abiotic stress; oxidative stress is of particular interest given that this can arise from thermally induced photosynthetic dysfunction. The aim of this study was to compare the effects of thermal and oxidative stress on the photosynthetic performance of a range of Symbiodinium clades and types (i.e. sub-clades) in different states of symbiosis (in hospite, freshly isolated and in culture). Whether the responses to these two stressors are related was investigated; in particular, it was hypothesised that more thermally sensitive types would be more sensitive to oxidative stress. Furthermore, the study aimed to elucidate the role of antioxidants in the observed stress responses. The specific objectives were 1) to establish whether different types of cultured Symbiodinium have dissimilar sensitivities to oxidative stress, induced by hydrogen peroxide (H₂O₂), and whether these are related to their thermal sensitivities; 2) measure the activity and relative amounts of specific reactive oxygen species (ROS) in different types of cultured Symbiodinium in response to thermal and oxidative stress induced by H₂O₂; 3) measure total antioxidant activity in different cultured Symbiodinium types when under oxidative stress; and 4) compare and contrast the responses of different Symbiodinium types to thermal and oxidative stress when in hospite (i.e. in corals) and freshly isolated. In this study, I showed that different Symbiodinium clades and types can differ widely in their responses to both thermal and oxidative stress. This was indicated by photosynthetic performance measured by chlorophyll fluorescence, and differences in the quantity of specific ROS measured via fluorescent probes and flow cytometry. For instance, when adding H₂O₂ to Symbiodinium F1, originally from Hawaii, a decrease of > 99% in maximum quantum yield (Fv/Fm) was displayed, while there was no change in Fv/Fm in the temperate Symbiodinium A1, freshly isolated from the anemone Anthopleura aureoradiata from New Zealand. When comparing the difference in ROS production between the control (26 °C) and a thermal stress treatment (35 °C), type E1 from Okinawa showed no difference in any of the measured ROS. In contrast, a different A1 type from the Gulf of Aqaba displayed an increase in the overall production of ROS, and more specifically in the production of superoxide. Symbiodinium types also displayed differential oxidative stress resistance, which was apparent from their antioxidant activities; in particular, total antioxidant capacity was measured by the ferric reducing antioxidant potential (FRAP) and cellular antioxidant activity (CAA) assays. For example, the aforementioned Symbiodinium types, A1 from the Gulf of Aqaba and F1, increased their antioxidant activities with increasing H₂O₂ concentrations. Meanwhile, type E1 displayed higher baseline levels of antioxidants in comparison to the other two types (A1, F1), which then decreased with increasing H₂O₂. Specific activities of superoxide dismutase and ascorbate peroxidase were also measured. Stress susceptibility appears to be related both to Symbiodinium type and geographic origin, but greater sensitivity to thermal stress did not necessarily correlate with greater susceptibility to oxidative stress. The exact relationship between thermal and oxidative sensitivities in Symbiodinium spp. remains elusive, but it is suggested that different types might follow different strategies for dealing with stress. I propose that some Symbiodinium types rely more on photo-protection when exposed to thermal stress (and hence cope less with oxidative stress), while other types depend more on antioxidants and oxidative stress resistance. The latter might be the better strategy for types from more variable environments, such as higher latitude reefs or intertidal regions, where potentially stressful conditions may be encountered more frequently. This study gives new insights into the variability of stress responses in the genus Symbiodinium, and the complex relationship between thermal and oxidative stress. The implications of these findings for coral bleaching susceptibility and the biogeographic distribution of different Symbiodinium types are discussed.</p>


2021 ◽  
Vol 34 (1) ◽  
pp. 192-205
Author(s):  
Ahmed M. Mojer ◽  
Majid M. Taher ◽  
Riyadh A. Al-Tameemi

A comparison was conducted for growth criteria of common carp, Cyprinus carpio larvae cultivated in earthen ponds and recirculation aquaculture system (RAS) depending on live foods (phytoplankton and zooplankton stimulated by buffalo fertilizers in earthen ponds, while the larvae cultivated in RAS were feed on Artemia larvae reproduced in vitro, in addition to manufactured pellets (38% crude protein) for common carp in both systems. Three 2500 m2 earthen ponds were cultivated for 90 days with larvae of initial weight 0.002 g at different numbers (40800 larvae for pond 1, 55600 larvae for pond 2 and 36400 larvae for pond 3). These larvae depend on natural food for 19 days, then fed on manufactured feed. Fishes were weighed every 19 days to change daily feed. Three replicates of RAS plastic tanks (100 letter capacity) cultivated for 90 days with 0.002 g larvae at a density of 2 larvae per one liter (160 larvae at each plastic tank). These larvae fed for 15 days to saturation (4 meals daily) with Artemia larvae and small Artemia, then fed on manufactured feed. Subsequently, fishes were weighed every 15 days to change daily feed. Larvae cultivated in earthen ponds recorded weight gain of 26.90 g, daily growth of 0.30 gday-1, relative growth of 1345000%, specific growth of 10.56 %day-1, feed conversion of 1.25 and survival rate of 13.16%. Larvae cultivated in RAS system recorded weight gain of 1.53 g, daily growth of 0.02 gday-1, relative growth of 76200%, specific growth of 7.37 %day-1, feed conversion of 2.82 and survival rate of 72.32%. Statistical analysis of results revealed significant differences (p>0.05) in all growth criteria for larvae cultivated in both systems. Final conclusion that earthen pond was better than RAS systems in producing fingerlings of common carp.


Sign in / Sign up

Export Citation Format

Share Document