A global test of Allen’s rule in rodents

2020 ◽  
Vol 29 (12) ◽  
pp. 2248-2260
Author(s):  
Bader H. Alhajeri ◽  
Yoan Fourcade ◽  
Nathan S. Upham ◽  
Hasan Alhaddad
Keyword(s):  
2014 ◽  
Author(s):  
Blaine Landis ◽  
Paul Piff ◽  
Ilmo van der Lowe ◽  
Youyou Wu ◽  
Emiliana Simon-Thomas ◽  
...  
Keyword(s):  

2008 ◽  
Vol 28 (S 01) ◽  
pp. S61-S66 ◽  
Author(s):  
G. Cvirn ◽  
A. Rosenkranz ◽  
B. Leschnik ◽  
W. Raith ◽  
W. Muntean ◽  
...  

SummaryThrombin generation was studied in paediatric patients with congenital heart disease (CHD) undergoing cardiac surgery using the calibrated automated thrombography (CAT) in terms of the lag time until the onset of thrombin formation, time to thrombin peak maximum (TTP), endogenous thrombin potential (ETP), and thrombin peak height. The suitability to determine the coagulation status of these patients was investigated. Patients, material, methods: CAT data of 40 patients with CHD (age range from newborn to 18 years) were compared to data using standard coagulation parameters such as prothrombin (FII), antithrombin (AT), tissue factor pathway inhibitor (TFPI), prothrombin fragment 1.2 (F 1.2), thrombin-antithrombin (TAT), activated partial thromboplastin time (aPTT), and prothrombin time (PT). Results: A significant positive correlation was seen between ETP and FII (p < 0.01; r = 0.369), as well as between peak height and F II (p < 0.01; r = 0.483). A significant negative correlation was seen between ETP and TFPI values (p < 0.05; r = –0.225) while no significant correlation was seen between peak height and TFPI. A significant negative correlation was seen between F 1.2 generation and ETP (p < 0.05; r = –0.254) and between F 1.2 generation and peak height (p < 0.05; r = –0.236). No correlation was seen between AT and ETP or peak. Conclusions: CAT is a good global test reflecting procoagulatory and inhibitory factors of the haemostatic system in paediatric patients with CHD.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
C Dupré ◽  
N Barth ◽  
A El Moutawakkil ◽  
F Béland ◽  
F Roche ◽  
...  

Abstract Background Few previous cohorts have studied the different type of physical activities and the degree of cognitive decline. The objective of this work was to analyze the leisure, domestic and professional activities with mild and moderate cognitive disorders in older people living in community. Methods The study used data from the longitudinal and observational study, FrèLE (FRagility: Longitudinal Study of Expressions). The collected data included: socio-demographic variables, lifestyle, and health status (frailty, comorbidities, cognitive status, depression). Cognitive decline was assessed by using: MMSE (Mini-Mental State Examination) and MoCA (Montreal Cognitive Assessment). MoCA was used with two cut-offs (26 and 17) so as to define mild and moderate cognitive disorders Physical activity was assessed by the PASE (Physical Activity Scale for the Elderly), structured in three sections: leisure, domestic and professional activities. Spline and proportional hazards regression models (Cox) were used to estimate the risk of cognitive disorders. Results At baseline, 1623 participants were included and the prevalence of cognitive disorders was 6.9% (MMSE) and 7.2% (MoCA), mild cognitive disorders was 71.3%. The mean age was 77 years, and 52% of the participants were women. After a 2 years long follow-up, we found 6.9% (MMSE) and 6% (MoCA) cognitive disorders on participants. Analyses showed that domestic activities were associated to cognitive decline (HR = 0.52 [0.28-0.94] for MMSE and HR = 0.48 [0.28-0.80] for MoCA). No association were found with leisure and professional activities, and no spline were significant with mild cognitive disorders. Conclusions Analysis showed a relationship between cognitive disorders and type of physical activity, thanks to the use of specific questionnaire of elderly and two global test of cognition. These findings will contribute to the debate on the beneficial effects of physical activity on cognition. Key messages This work allowed to compare two test of cognition and their link with physical activity. It contributes to the debate on the beneficial effects of physical activity on cognition. The work allowed us to see the effect of the different types of physical activity and the impact of the statistical method on the results.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhiyong Cui ◽  
Yun Tian

Abstract Background The coronavirus disease 2019 (COVID-19) pandemic has struck globally and is exerting a devastating toll on humans. The pandemic has led to calls for widespread vitamin D supplementation in public. However, evidence supporting the role of vitamin D in the COVID-19 pandemic remains controversial. Methods We performed a two-sample Mendelian randomization (MR) analysis to analyze the causal effect of the 25-hydroxyvitamin D [25(OH)D] concentration on COVID-19 susceptibility, severity and hospitalization traits by using summary-level GWAS data. The causal associations were estimated with inverse variance weighted (IVW) with fixed effects (IVW-fixed) and random effects (IVW-random), MR-Egger, weighted edian and MR Robust Adjusted Profile Score (MR.RAPS) methods. We further applied the MR Steiger filtering method, MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) global test and PhenoScanner tool to check and remove single nucleotide polymorphisms (SNPs) that were horizontally pleiotropic. Results We found no evidence to support the causal associations between the serum 25(OH)D concentration and the risk of COVID-19 susceptibility [IVW-fixed: odds ratio (OR) = 0.9049, 95% confidence interval (CI) 0.8197–0.9988, p = 0.0473], severity (IVW-fixed: OR = 1.0298, 95% CI 0.7699–1.3775, p = 0.8432) and hospitalized traits (IVW-fixed: OR = 1.0713, 95% CI 0.8819–1.3013, p = 0.4878) using outlier removed sets at a Bonferroni-corrected p threshold of 0.0167. Sensitivity analyses did not reveal any sign of horizontal pleiotropy. Conclusions Our MR analysis provided precise evidence that genetically lowered serum 25(OH)D concentrations were not causally associated with COVID-19 susceptibility, severity or hospitalized traits. Our study did not provide evidence assessing the role of vitamin D supplementation during the COVID-19 pandemic. High-quality randomized controlled trials are necessary to explore and define the role of vitamin D supplementation in the prevention and treatment of COVID-19.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
K. M. J. Krishna ◽  
T. Traison ◽  
Sejil Mariya Sebastian ◽  
Preethi Sara George ◽  
Aleyamma Mathew

Abstract Objectives: In time to event analysis, the risk for an event is usually estimated using Cox proportional hazards (CPH) model. But CPH model has the limitation of biased estimate due to unobserved hidden heterogeneity among the covariates, which can be tackled using frailty models. The best models were usually being identified using Akaike information criteria (AIC). Apart from AIC, the present study aimed to assess predictability of risk models using survival concordance measure. Methods: CPH model and frailty models were used to estimate the risk for breast cancer patient survival, and the frailty variable was assumed to follow gamma distribution. Schoenfeld global test was used to check the proportionality assumption. Survival concordance, AIC and simulation studies were used to identify the significance of frailty. Results: From the univariate analysis it was observed that for the covariate age, the frailty has a significant role (θ = 2.758, p-value: 0.0004) and the corresponding hazard rate was 1.93 compared to that of 1.38 for CPH model (age > 50 vs. ≤ 40). Also the covariates radiotherapy and chemotherapy were found to be significant (θ = 5.944, p-value: <0.001 and θ = 16, p-value: <0.001 respectively). Even though there were only minor differences in hazard rates, the concordance was higher for frailty than CPH model for all the covariates. Further the simulation study showed that the bias and root mean square error (RMSE) obtained for both the methods was almost the same and the concordance measures were higher for frailty model by 12–15%. Conclusions: We conclude that the frailty model is better compared to CPH model as it can account for unobserved random heterogeneity, and if the frailty coefficient doesn’t have an effect it gives exactly the same risk as that of CPH model and this has been established using survival concordance.


2021 ◽  
Vol 37 (2) ◽  
pp. 367-394
Author(s):  
Tucker McElroy

Abstract Methodology for seasonality diagnostics is extremely important for statistical agencies, because such tools are necessary for making decisions whether to seasonally adjust a given series, and whether such an adjustment is adequate. This methodology must be statistical, in order to furnish quantification of Type I and II errors, and also to provide understanding about the requisite assumptions. We connect the concept of seasonality to a mathematical definition regarding the oscillatory character of the moving average (MA) representation coefficients, and define a new seasonality diagnostic based on autoregressive (AR) roots. The diagnostic is able to assess different forms of seasonality: dynamic versus stable, of arbitrary seasonal periods, for both raw data and seasonally adjusted data. An extension of the AR diagnostic to an MA diagnostic allows for the detection of over-adjustment. Joint asymptotic results are provided for the diagnostics as they are applied to multiple seasonal frequencies, allowing for a global test of seasonality. We illustrate the method through simulation studies and several empirical examples.


2016 ◽  
Author(s):  
James Liley ◽  
John A Todd ◽  
Chris Wallace

AbstractMany common diseases show wide phenotypic variation. We present a statistical method for determining whether phenotypically defined subgroups of disease cases represent different genetic architectures, in which disease-associated variants have different effect sizes in the two subgroups. Our method models the genome-wide distributions of genetic association statistics with mixture Gaussians. We apply a global test without requiring explicit identification of disease-associated variants, thus maximising power in comparison to a standard variant by variant subgroup analysis. Where evidence for genetic subgrouping is found, we present methods for post-hoc identification of the contributing genetic variants.We demonstrate the method on a range of simulated and test datasets where expected results are already known. We investigate subgroups of type 1 diabetes (T1D) cases defined by autoantibody positivity, establishing evidence for differential genetic architecture with thyroid peroxidase antibody positivity, driven generally by variants in known T1D associated regions.


Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2505
Author(s):  
Mariusz Węgrzyn ◽  
Ernest Jamro ◽  
Agnieszka Dąbrowska-Boruch ◽  
Kazimierz Wiatr

Testing FPGA-based soft processor cores requires a completely different methodology in comparison to standard processors. The stuck-at fault model is insufficient, as the logic is implemented by lookup tables (LUTs) in FPGA, and this SRAM-based LUT memory is vulnerable to single-event upset (SEU) mainly caused by cosmic radiations. Consequently, in this paper, we used combined SEU-induced and stuck-at fault models to simulate every possible fault. The test program written in an assembler was based on the bijective property. Furthermore, the fault detection matrix was determined, and this matrix describes the detectability of every fault by every test vector. The major novelty of this paper is the optimal reduction in the number of required test vectors in such a way that fault coverage is not reduced. Furthermore, this paper also studied the optimal selection of test vectors when only 95% maximal fault coverage is acceptable; in such a case, only three test vectors are required. Further, local and global test vector selection is also described.


Sign in / Sign up

Export Citation Format

Share Document