Effects of chitosan and zirconia on setting time, mechanical strength, and bioactivity of calcium silicate-based cement

2016 ◽  
Vol 14 (2) ◽  
pp. 135-144 ◽  
Author(s):  
Ali Kamali ◽  
Sirus Javadpour ◽  
Bahar Javid ◽  
Niloofar Kianvash Rad ◽  
Sina Naddaf Dezfuli
Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 382 ◽  
Author(s):  
Danying Gao ◽  
Zhenqing Zhang ◽  
Yang Meng ◽  
Jiyu Tang ◽  
Lin Yang

This work aims to investigate the effect of additional flue gas desulfurization gypsum (FGDG) on the properties of calcium sulfoaluminate cement (CSAC) blended with ground granulated blast furnace slag (GGBFS). The hydration rate, setting time, mechanical strength, pore structure and hydration products of the CSAC-GGBFS mixture containing FGDG were investigated systematically. The results show that the addition of FGDG promotes the hydration of the CSAC-GGBFS mixture and improves its mechanical strength; however, the FGDG content should not exceed 6%.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 728
Author(s):  
David Donnermeyer ◽  
Magdalena Ibing ◽  
Sebastian Bürklein ◽  
Iris Weber ◽  
Maximilian P. Reitze ◽  
...  

The aim of this study was to gain information about the effect of thermal treatment of calcium silicate-based sealers. BioRoot RCS (BR), Total Fill BC Sealer (TFBC), and Total Fill BC Sealer HiFlow (TFHF) were exposed to thermal treatment at 37 °C, 47 °C, 57 °C, 67 °C, 77 °C, 87 °C and 97 °C for 30 s. Heat treatment at 97 °C was performed for 60 and 180 s to simulate inappropriate application of warm obturation techniques. Thereafter, specimens were cooled to 37 °C and physical properties (setting time/flow/film thickness according to ISO 6876) were evaluated. Chemical properties (Fourier-transform infrared spectroscopy) were assessed after incubation of the specimens in an incubator at 37 °C and 100% humidity for 8 weeks. Statistical analysis of physical properties was performed using the Kruskal-Wallis-Test (P = 0.05). The setting time, flow, and film thickness of TFBC and TFHF were not relevantly influenced by thermal treatment. Setting time of BR decreased slightly when temperature of heat application increased from 37 °C to 77 °C (P < 0.05). Further heat treatment of BR above 77 °C led to an immediate setting. FT-IR spectroscopy did not reveal any chemical changes for either sealers. Thermal treatment did not lead to any substantial chemical changes at all temperature levels, while physical properties of BR were compromised by heating. TFBC and TFHF can be considered suitable for warm obturation techniques.


2013 ◽  
Vol 477-478 ◽  
pp. 931-935
Author(s):  
Chang Zheng Sun ◽  
Xiao Ping Zhang ◽  
Hai Nan Zhao ◽  
Qiang Gao

To explore retarders on performance of ultra-early strength grouting material, Retarder, which are commonly used in the market after a preliminary screening, are further tested and analyzed for initial fluidity, setting time and mechanical strength properties of super early strength grouting material. The results show that: When borax content is 0.4%, the initial fluidity, final setting time, workability, mechanical strength are the best.


Author(s):  
Fernanda F. E. Torres ◽  
Patricia Perinoto ◽  
Roberta Bosso-Martelo ◽  
Gisselle M. Chávez-Andrade ◽  
Juliane M. Guerreiro-Tanomaru ◽  
...  

Differences in liquid-to-powder ratio can affect the properties of calcium silicate-based materials. This study assessed the influence of powder-to-gel ratio on physicochemical properties of NeoMTA Plus. Setting time (minutes), flow (mm and mm²), pH (at different periods), radiopacity (mm Al) and solubility (% mass loss) were evaluated using the consistencies for root repair material (NMTAP-RP; 3 scoops of powder to 2 drops of gel) and root canal sealer (NMTAP-SE; 3 scoops of powder to 3 drops of gel), in comparison to Biodentine cement (BIO) and TotalFill BC sealer (TFBC). Statistical analysis was performed using one-way ANOVA and Tukey tests (α=0.05). BIO had the shortest setting time, followed by NMTAP-RP and NMTAP-SE. TFBC showed the highest setting time and radiopacity. BIO, NMTAP-RP, and NMTAP-SE had similar radiopacity. All materials promoted an alkaline pH. NMTAP-RP/SE presented lower solubility than BIO and TFBC. Regarding the flow, TFBC had the highest values, followed by NMTAP-SE, and NMTAP-RP. BIO had the lowest flow. In conclusion, NMTAP in both powder-to-gel ratios showed high pH and low solubility. The increase in the powder ratio decreased the setting time and flow. These findings are important regarding the proper consistency and work time to clinical application.


2021 ◽  
Vol 1017 ◽  
pp. 11-20
Author(s):  
Evgeny A. Shoshin ◽  
Valeria V. Strokova ◽  
Zheng Mao Ye

Silicate micro- and nano-additives are multifunctional in relation to cement systems. Their application can solve a wide range of technological problems while maintaining the economic efficiency of technical solutions. The effect of silicate additives and fillers is determined by their level of dispersion, due to which the technologies for producing nano- and submicro-sized dispersed materials are being developed. The combination of mechanochemical synthesis of modified calcium hydrosilicates with subsequent thermolysis makes it possible to produce calcium silicate dispersions (SCD), which differ in polymodality of the fractional composition including submicro (10–7–10–6 m) and microdimensional (≥10–6 m) modes. The main element of the technology is the use of modifying carbohydrate, which acts as a stabilizer of hydrated phases of silicates. A comparative study of SCD produced using sucrose (sSCD) and lactose (lSCD) revealed the effect of these carbohydrates on the properties of sSCD and lSCD, as well as their effectiveness as a component of cementitious composite binder. It was found that the level of adsorption of modifying carbohydrate determines the physical properties of SCD (granulometry, specific surface area). The relatively high residual content of free sucrose (0.24%) in the composition of sSCD prevents the consolidation of silicates nanoparticles formed during the thermolysis, causes a high content of submicro sized fractions and a high specific surface area with sSCD (26.3 ± 0.7 m2/g). Lactose is absorbed by the silicate phase; the residual content of free lactose does not exceed 0.028% of lSCD. The low content of stabilizing carbohydrate contributes to the development of nanoparticle consolidation, a decrease in the specific surface area of lSCD to 13.0 ± 0.2 m2/g and content of submicrosized fractions. The residual content of free carbohydrates and particle size characteristics of sSCD and lSCD determine the nature of their influence on Cement-SCD-based concrete setting and hardening. The presence of residual sucrose in the composition of sSCD and fine fractions determines the competitive nature of the processes of retardation of hardening and acceleration of hardening of the cement system due to the nucleation effect, as a result of which the curve of the setting time is extreme. In addition, the inhibitory effect of sucrose reduces the strength of concrete on the 7th day. By the 28th day, the inhibitory effect of sucrose has been overcome, and concrete samples demonstrate an 18% increase in compressive strength with a sSCD content of 30%. The low content of residual free lactose in the composition of lSCD causes the nucleation effect. As a result, there is a monotonous reduction in the setting time of concrete mix with an increase in the content of lSCD in the composition of HF, as well as a significant increase in concrete strength (up to 127%) on the 7th day. At the same time, on the 28th day the strength of concrete increases slightly


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3937
Author(s):  
Sofia Real ◽  
Ana Carriço ◽  
José Alexandre Bogas ◽  
Mafalda Guedes

This paper intends to contribute to a better knowledge of the production and rehydration of thermoactivated recycled cement and its incorporation in cement-based materials. To this end, the influence of the treatment temperature on the properties of recycled cements and recycled cement pastes was assessed by means of a wide array of tests. Anhydrous recycled cement as well as the resulting pastes were characterized through density and particle size, water demand and setting time, thermogravimetry, X-ray diffraction, field emission gun scanning electron microscopy, isothermal calorimetry, 29Si nuclear magnetic resonance spectroscopy, flowability, mechanical strength, mercury intrusion porosimetry and scanning electron microscopy. The treatment temperature had a significant influence on the dehydration and hydration of recycled cement, essentially resulting in the formation of C2S polymorphs of varying reactivity, which led to pastes of different fresh and hardened behaviors. The high water demand and the pre-hydration of recycled cement resulted in high setting times and low compressive strengths. The highest mechanical strength was obtained for a treatment temperature of 650 °C.


2010 ◽  
Vol 150 ◽  
pp. 465-465
Author(s):  
Maria Giovanna Gandolfi ◽  
Andrea Colin ◽  
Giovanni Luca Acquaviva ◽  
Stefano Chersoni ◽  
Fabio Fava ◽  
...  

2014 ◽  
Vol 1015 ◽  
pp. 272-275
Author(s):  
Xiao Qiong Ren ◽  
Ya Nan Wu ◽  
Ying Li ◽  
Mo Han Lin ◽  
Feng Qing Zhao

Gypsum retarder is an important additive of building materials. Commercial gypsum retarders are mainly composed of four types: organic acids, phosphates, protein and composite retarder. Although the effects of organic acids and phosphates have better retarding performances, there is still obvious a shortcoming that the mechanical strength reduces largely with time going by. Protein based retarders prolong the setting time of hemihydrates with less strength loss and higher costs. The gypsum retarder from waste mycelium, a protein-rich raw material, solved the problem of the disposal of waste mycelium from anti-biotic plants, while producing high-quality retarder for gypsum, shows potential for future.


2012 ◽  
Vol 727-728 ◽  
pp. 1016-1021 ◽  
Author(s):  
S.R. Bragança ◽  
H.C.M Lengler ◽  
Carlos Pérez Bergmann

Wollastonite is a calcium silicate mineral natural or synthetic. Commercial wollastonite starts to melt at about 1450°C and can not be considered a "flux" as alkali feldspar. For this function, it depends on the reaction with other raw materials. Faced with this, came the goal of this work which was to investigate the mechanism of action of wollastonite as a ceramic flux. The use of wollastonite in ceramic bodies was investigated by analysis of its reactivity with other materials such as quartz, kaolin, talc and feldspar. It was analyzed the technological properties of the final parts, especially in relation to the firing temperature, phase formation and technological properties (mechanical strength, porosity, etc.). The results of this characterization showed that the technical properties of the parts are developed according to commercial porcelain products.


Sign in / Sign up

Export Citation Format

Share Document