The effects of temperature and moisture content on lipid peroxidation during storage of unblanched salted roasted peanuts: shelf life studies for unblanched salted roasted peanuts

2007 ◽  
Vol 28 (2) ◽  
pp. 193-199 ◽  
Author(s):  
E. ÖZGÜL EVRANUZ
Author(s):  
M. Elenwo ◽  
N. Maduka ◽  
N. N. Odu

Bacterial resistance to commonly used antibiotics is a threat to public health. This study focused on antibiogram testing of bacterial isolates from packaged and exposed cassava, plantain and yam flour using chloramphenicol, ciprofloxacin, erythromycin, levofloxacin, gentamicin, ampiclox, rifampicin, amoxil, streptomycin, norfloxacin, ampicillin, ceporex, tarivid, nalidixic acid, peflacine, augmentin and septrin. Shelf life studies involved monitoring total viable count, total fungal count and moisture content of the flour samples stored at room temperature (28± 2°C) at 1 Wk interval for 4 Wks. Standard methods and agar diffusion technique were adopted. Bacillus sp. and Staphylococcus sp. (Gram-positive) were identified in all the flour samples. Salmonella sp. and Escherichia coli (Gram negative) were isolated from exposed plantain and yam flour, respectively. Gram-positive isolates susceptible and resistant to each antibiotic ranged between 65.38-96.15% and 3.85-30.77%, respectively whereas that of Gram-negative isolates was between 25-75%. Antibiogram testing revealed that 76.92 and 30.77% of Bacillus and Staphylococci isolates, respectively were sensitive; 100% Salmonella sp. and E. coli (isolate OMY) was resistant and sensitive, respectively. Among antibiotics used for Gram-positive bacteria, rifampicin was most effective whereas streptomycin, tarivid, nalidixic acid, gentamycin, augmentin and ciprofloxacin were more effective than other antibiotics used for Gram negative bacteria. During storage of the flour samples, moisture content (8.6-23.20%) and total viable count (6.47-6.86 log10cfu/g) increased but total fungal count (3.53-2.15 log10cfu/g) decreased with few exceptions. Therefore, reduction in microbial contamination of edible flours by implementing good manufacturing practices and proper packaging of the commercialized products could reduce the spread of antimicrobial resistant bacteria.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Aulia Alfi

Virgin Coconut Oil (VCO) adalah bahan alami yang memiliki sifat antimikroba (antivirus, antibakteri, dan antijamur). Sehingga VCO dapat memberikan efek pengawet pada bahan makanan, salah satunya adalah roti manis. Penelitian ini dilakukan untuk mengevaluasi pengaruh VCO terhadap karakteristik (fisik dan kimia) dan umur simpan roti manis. Roti manis dianalisis secara fisik (tekstur dan porositas) dan kimia (kadar air, kadar abu, kadar lemak, kadar protein, dan kandungan karbohidrat), dan analisis umur simpan dengan FFA, uji organoleptik dan jamur setiap dua hari selama delapan hari penyimpanan di suhu ruang. Variasi perlakuan roti manis adalah dari rasio konsentrasi VCO: margarin: mentega, K (0%: 8%: 8%); A (4%: 6%: 6%); B (8%: 4%: 4%), C (12%: 2%: 2%); D (16%: 0%: 0%). Hasil penelitian menunjukkan bahwa VCO tidak memiliki pengaruh yang signifikan terhadap karakteristik fisik dan karakteristik kimia roti manis. Namun, VCO berpengaruh signifikan terhadap kadar air roti manis yang dihasilkan, roti manis K memiliki kadar air tertinggi (22,36%) dan berbeda dengan sampel roti manis lainnya. VCO secara efektif menghambat pertumbuhan jamur di roti manis pada konsentrasi 8%, 12%, dan 16%. Roti manis K dan A memiliki masa simpan 4 hari, sedangkan roti manis B, C, dan D memiliki masa simpan 6 hari.Kata kunci: VCO, roti manis, karakteristik, umur simpanABSTRACTVirgin Coconut Oil (VCO) is a natural ingredient that has antimicrobial (antiviral, antibacterial, and antifungal) properties. So that VCO can provide a preservative effect on food ingredients, one of which is sweet bread. This research was conducted to evaluate the effect of VCO on characteristics (physical and chemical) and shelf life of sweet bread. Sweet bread was analyzed physically (texture and porosity) and chemistry (moisture content, ash content, fat content, protein content, and carbohydrate content), and shelf life analysis with FFA, organoleptic and mold tests every two days for eight days of storage at ambient temperature. Treatment variations of sweet breads is from the ratio of the concentration of VCO: margarine: butter, K (0%: 8%: 8%); A (4%: 6%: 6%); B (8%: 4%: 4%), C (12%: 2%: 2%); D (16%: 0%: 0%). The results showed that VCO did not have a significant effect on the physical characteristics and chemical characteristics of sweet bread. However, the VCO has a significant effect on the water content of the sweet bread produced, sweet bread K has the highest moisture content (22,36%) and it is different from other sweet bread samples. VCO effectively inhibits the growth of sweet bread mold at concentrations of 8%, 12%, and 16%. K and A sweet bread has a shelf life of 4 days, while sweet breads B, C, and D have a shelf life of 6 days.Keywords: VCO, sweet bread, characteristics, shelf life


2012 ◽  
Vol 531 ◽  
pp. 395-398
Author(s):  
Xiao Fei Sun ◽  
Yu Hui Qiao

Ginkgo seeds were selected and used as experimental material to study protein compositions in ginkgo protein. Ginkgo protein was used as accessory to be added into flour to make bread. Effect of ginkgo protein on moisture content and hardness of bread were investigated. Experimental results showed that ginkgo protein contained water-soluble protein and salt-soluble protein which was 85.28 percents in total protein and contained small amounts of prolamin and alkali-soluble protein. The bread added with different ratios of ginkgo protein had higher moisture content and lower hardness. Therefore, adding appropriate amount of ginkgo protein could improve bread baking performances and bread shelf life.


2016 ◽  
Vol 5 (2) ◽  
Author(s):  
Luca Fasolato ◽  
Barbara Cardazzo ◽  
Stefania Balzan ◽  
Lisa Carraro ◽  
Nadia Andrea Andreani ◽  
...  

Phenols are plant metabolites characterised by several interesting bioactive properties such as antioxidant and bactericidal activities. In this study the application of a phenols concentrate (PC) from olive vegetation water to two different fresh products – gilt-head seabream (<em>Sparus aurata</em>) and chicken breast – was described. Products were treated in a bath of PC (22 g/L; chicken breast) or sprayed with two different solutions (L1:0.75 and L2:1.5 mg/mL; seabream) and then stored under refrigeration conditions. The shelf life was monitored through microbiological analyses – quality index method for seabream and a specific sensory index for raw breast. The secondary products of lipid-peroxidation of the chicken breast were determined using the thiobarbituric acid reactive substances (TBARs) test on cooked samples. Multivariate statistical techniques were adopted to investigate the impact of phenols and microbiological data were fitted by DMfit software. In seabream, the levels of PC did not highlight any significant difference on microbiological and sensory features. DMfit models suggested an effect only on H<sub>2</sub>S producing bacteria with an increased lag phase compared to the control samples (C: 87 h <em>vs</em> L2: 136 h). The results on chicken breast showed that the PC bath clearly modified the growth of <em>Pseudomonas</em> and <em>Enterobacteriaceae</em>. The phenol dipping was effective in limiting lipid-peroxidation (TBARs) after cooking. Treated samples disclosed an increase of shelf life of 2 days. These could be considered as preliminary findings suggesting the use of this concentrate as preservative in some fresh products.


1970 ◽  
Vol 44 (2) ◽  
pp. 147-156
Author(s):  
Tamanna Sultana ◽  
GP Savage ◽  
NG Porter ◽  
DL McNeil ◽  
JR Sedcole

Isothiocyanates (ITCs) contained in purees extracted from wasabi (Wasabia japonica (Miq) Matsum) can be used to manufacture a range of interesting spicy foods. In New Zealand, local manufacturers are showing interest in producing various forms of processed wasabi based sauces. However, isothiocyanates have been shown to degrade quickly in some situations. Therefore, in this study, the stability of allyl ITC was investigated in three wasabi flavoured products stored at four different temperatures (4, 10, 20 and 30°C) for 22 weeks. Two creamy (mayonnaise and tartare) sauces and a non-creamy sauce were prepared from an original recipe and flavoured with a known volume of "wasabi oil". Two types of pouches (clear and metallic plastic) were used to store each product and allyl ITC content was measured in the stored sauces at two week intervals. The initial level of allyl ITC found in mayonnaise, tartare and smoky tomato sauces were 415.3, 411.4 and 144.7 mg/ kg respectively, prior to storage. Temperature showed a strong influence in reducing allyl ITC (P=0.005 to <0.001) but no significant effect was identified for the two types of packets used. The non-creamy smoky tomato sauce was very unstable at 10°C or higher temperatures and the allyl ITC contents reduced rapidly with increasing storage temperatures. For instance, at 30°C, a 66% loss occurred by week 2 and a 90% loss occurred by week 6 in the smoky tomato sauce. However, mayonnaise and tartare sauces had a shelf life of 8 to 9 weeks with only a marginal reduction in allyl ITC (2% overall) at all the stored temperatures (4-30°C). These creamy sauces were characterized by a sudden fall in 10 weeks ending in a 69-70% loss of allyl ITC at 22 weeks. No microbial growth occurred in any of the sauces stored at any of the temperatures during the course of this storage experiment though very small change of colour was noticed for the sauces when stored at 30°C. Keywords: Bangladesh J. Sci. Ind. Res. 44(2), 147-156, 2009DOI: 10.3329/bjsir.v44i2.3665Bangladesh J. Sci. Ind. Res. 44(2), 147-156, 2009


2013 ◽  
Vol 37 (4) ◽  
pp. 729-736 ◽  
Author(s):  
Mohammad Mizanur Rahman ◽  
Md Miaruddin ◽  
Md. Golam Ferdous Chowdhury ◽  
Md. Hafizul Haque Khan ◽  
MA Matin

The experiment was conducted to evaluate the effect of packaging materials on the quality and shelf life of green chili (Capsicum annuum) using passive modification of modified atmosphere packaging system. The modified atmosphere was created by making perforation in the polypropylene packets. Green chili pre-treated with chlorine water and then packaging in 0.3% perforated polypropylene packet resulted substantial reduction of weight loss and rotting/shriveling. These treatment combinations also considerably retained vitamin C, ß-carotene, moisture content, etc. Under this condition the retention of quality and shelf life of green chili could be extended up to 10 days at ambient condition as compared to non-treated and without packaging. DOI: http://dx.doi.org/10.3329/bjar.v37i4.14397 Bangladesh J. Agril. Res. 37(4): 729-736, December 2012


2017 ◽  
Vol 31 (S1) ◽  
Author(s):  
Nina Schlossman ◽  
Quentin Johnson ◽  
Lauren Wood ◽  
Nicole Coglianese ◽  
Vicky Santoso ◽  
...  

2015 ◽  
Vol 3 (4) ◽  
pp. 18-24
Author(s):  
Rika Silvia ◽  
Sari Wahyu Waryani ◽  
Farida Hanum

The use of appropriate anti-microbial compounds can extend the shelf life of a product as well as ensure the safety of the product. That requires a material that is naturally anti-microbial so as not harmful to health. The use of chitosan to inhibit microbial activity on mackerel (Rastrelliger sp) and catfish (Clarias batrachus) to test it's effectiveness. In this research chitosan that used as an anti-microbial extracted from the shells of crabs (Portunus sanginolentus L.). Chitin and chitosan that were successfully extracted were characterized it's results includes moisture content testing, ash content, and degrees of deacetylation. Characterized chitosan, were used as an anti-microbial mackerel (Rastrelliger sp) and catfish (Clarias batrachus). Chitosan was dissolved in 1% acetic acid with varying concentrations of chitosan as 1%, 1.5%, 2%, and 2.5%. The storage time of fish: 0 hours, 10 hours, 15 hours, 20 hours, and 25 hours. The results of research chitosan form as granules / powder, 5% moisture content, ash content  2% and the degree of deacetylation which amounted to 61,08%. Chitosan solution test results on fish showed that fish preservation by soaking with chitosan addition of 1.5% was the best variable and could extend the shelf life of fish  more than 5 hours while fish preservation by spraying gave the best variable with addition of chitosan 2.5% and could extend the shelf life of fish less than 5 hours.


Sign in / Sign up

Export Citation Format

Share Document