scholarly journals A comparison of ammonium, nitrate and proton net fluxes along seedling roots of Douglas-fir and lodgepole pine grown and measured with different inorganic nitrogen sources

2008 ◽  
Vol 31 (3) ◽  
pp. 278-287 ◽  
Author(s):  
B. J. HAWKINS ◽  
H. BOUKCIM ◽  
C. PLASSARD
Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 22
Author(s):  
Rui M. A. Machado ◽  
Isabel Alves-Pereira ◽  
Yasmin Faty ◽  
Sara Perdigão ◽  
Rui Ferreira

The aim of the present study was to evaluate the effects of nitrogen source applied by fertigation to an enriched soil with organic compost on plant growth, mineral nutrition, and phytochemical contents in two successive harvests in coriander. The treatments were as follows: unfertilized soil, soil enriched with organic compost, and soil enriched with organic compost to which 60 kg N ha−1 as ammonium nitrate and as ammonium sulfate applied by fertigation were added. Ammonium nitrate addition allowed to obtain a high total fresh yield (3.6 kg m−2) with a low inorganic nitrogen input. Ammonium nitrate increased plant shoot dry weight; fresh yield; and shoot N, K, and Ca uptake in the first harvest. Ammonium nitrate relative to organic compost and to ammonium sulfate increased fresh yield by approximately 57 and 25%, respectively. However, ammonium sulfate in the first harvest greatly increased shoot total phenols, from 137 mgGAE/100 g FW in ammonium nitrate to 280.4 mgGAE/100 g FW. Coriander’s fresh yield, in the second harvest, was unaffected by nitrogen addition. However, ammonium nitrate increased shoot total phenols and FRAP activity. Overall, the shoot phytochemical accumulation in the second harvest was lower than in the first. The combined application of ammonium nitrate and organic compost is a strategy to reduce inorganic nitrogen application.


1988 ◽  
Vol 68 (1) ◽  
pp. 63-75 ◽  
Author(s):  
LEONARD J. EATON ◽  
DAVID G. PATRIQUIN

Soil ammonium and nitrate in the top 15 cm of soil were monitored after application of ammonium nitrate and ammonium sulfate to plots at 14 PF (previously fertilized) and 12 NF (never fertilized) lowbush blueberry (Vaccinium angustifolium Ait.) stands representing a range of soil types and management histories. Overall, nitrate values in unfertilized and ammonium sulfate plots were higher at PF than at NF sites, suggesting greater nitrification at PF sites. In laboratory incubation studies, nitrification proceeded immediately in soil from a PF site, but only after a 4-wk lag in that from an adjacent NF site. Nitrification rates were low compared to that in a garden soil (pH 6.6). N-Serve inhibited nitrification in both soils. In ammonium nitrate plots, "excess" N values (N values in fertilized plots minus values in unfertilized plots) were higher for PF than for NF sites, suggesting greater immobilization, plant uptake or loss of N at NF sites. There was no evidence, in laboratory studies, of immobilization of added N by soil from either type of site. Rhizome N concentration increased significantly in response to fertilization at an NF site, but not at a PF site. Key words: Blueberry (lowbush), fertilizer and soil nitrogen


2020 ◽  
Vol 36 (4) ◽  
Author(s):  
Natália Silva Assunção ◽  
Natalia Oliveira Silva ◽  
Flávio Lemes Fernandes ◽  
Leonardo Angelo de Aquino ◽  
Maria Elisa De Sena Fernandes

The objective of this study was to evaluate the effect of nitrogen sources and rates on the physicochemical characteristics and yield of tomato plants. Forty hybrids were cultivated at 100 and 400 kg ha-1 of N, combined with four sources (urea, ammonium sulfate, ammonium nitrate and calcium), plus a treatment without N application in a randomized complete block design four replicates. Size, stem diameter, number of leaves, SPAD (Soil Plant Analysis Development), leaf nitrogen, number of fruits / plants, fruit firmness, bark thickness and average fruit size, ° BRIX, pH, calcium, potassium and sodium in fruits. There was an increase in SPAD index, Brix and longitudinal diameter of fruits as a function of the N dose. The use of ammonium nitrate and calcium provided stronger fruits. Urea and ammonium nitrate provided the highest pH value in tomato fruits. The application of the 100 kg ha-1 dose of N resulted in the highest potassium content in fruits. The highest productivity was obtained with the application of sources containing ammonium and the lowest in the control treatment. Sources and doses of nitrogen fertilizers influenced growth, productivity and parameters related to tomato quality.  


2019 ◽  
Vol 49 (11) ◽  
pp. 1471-1482
Author(s):  
Woongsoon Jang ◽  
Bianca N.I. Eskelson ◽  
Louise de Montigny ◽  
Catherine A. Bealle Statland ◽  
Derek F. Sattler ◽  
...  

This study was conducted to quantify growth responses of three major commercial conifer species (lodgepole pine (Pinus contorta Douglas ex Loudon var. latifolia Engelm. ex S. Watson), interior Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco), and spruce (white spruce (Picea glauca (Moench) Voss) and hybrid spruce (Picea engelmannii Parry ex. Engelm. × Picea glauca (Moench) Voss × Picea sitchensis (Bong.) Carrière))) to various fertilizer blends in interior British Columbia, Canada. Over 25 years, growth-response data were repeatedly collected across 46 installations. The fertilizer blends were classified into three groups: nitrogen only; nitrogen and sulfur combined; and nitrogen, sulfur, and boron combined. The growth responses for stand volume, basal area, and top height were calculated through absolute and relative growth rate ratios relative to a controlled group. Fertilizer blend, inverse years since fertilization, site index, stand density at fertilization, and their interactions with the fertilizer blend were used as explanatory variables. The magnitude and significance of volume and basal area growth responses to fertilization differed by species, fertilizer-blend groups, and stand-condition variables (i.e., site index and stand density). In contrast, the response in top height growth did not differ among fertilization blends, with the exception of the nitrogen and sulfur fertilizer subgroup for lodgepole pine. The models developed in this study will be incorporated into the current growth and yield fertilization module (i.e., Table Interpolation Program for Stand Yields (TIPSY)), thereby supporting guidance of fertilization applications in interior forests in British Columbia.


1987 ◽  
Vol 79 (5) ◽  
pp. 937-943 ◽  
Author(s):  
M. P. Westcott ◽  
D. S. Mikkelsen

2020 ◽  
Vol 12 (21) ◽  
pp. 8893
Author(s):  
Huanran Liu ◽  
Dan Zhang ◽  
Xia Zhang ◽  
Chuanzhi Zhou ◽  
Pei Zhou ◽  
...  

The strains capable of degrading cellulose have attracted much interest because of their applications in straw resource utilization in solid-state fermentation (SSF). However, achieving high spore production in SSF is rarely reported. The production of spores from Streptomyces griseorubens JSD-1 was investigated in shaker-flask cultivation in this study. The optimal carbon, organic nitrogen and inorganic nitrogen sources were sucrose, yeast extract and urea, respectively. Plackett–Burman design (PBD) was adopted to determine the key medium components, and the concentration levels of three components (urea, NaCl, MgSO4·7H2O) were optimized with the steepest ascent path and central composite design (CCD), achieving 1.72 × 109 CFU/g of spore production. Under the optimal conditions (urea 2.718% w/v, NaCl 0.0697% w/v, MgSO4·7H2O 0.06956% w/v), the practical value of spore production was 1.69 × 109 CFU/g. The determination coefficient (R2) was 0.9498, which ensures an adequate credibility of the model.


1987 ◽  
Vol 67 (1) ◽  
pp. 185-192 ◽  
Author(s):  
H. T. KUNELIUS ◽  
J. A. MACLEOD ◽  
K. B. MCRAE

Urea and ammonium nitrate were applied at 30, 60, 90 and 120 kg N ha−1 in spring and after cutting the primary growth of timothy and bromegrass in three field experiments. Dry matter yields of timothy and bromegrass and total nitrogen concentration of tissue and nitrogen yields of timothy were determined. Loss of nitrogen as ammonia was monitored on microplots between the end of May and early July. Primary growth yields were usually similar for ammonium nitrate and urea but in the secondary growth timothy fertilized with ammonium nitrate outyielded timothy fertilized with urea in four out of six harvest years. Dry matter response to applied nitrogen was usually curvilinear in primary growth but linear in secondary growth over the nitrogen rates studied. Total nitrogen concentration in primary and secondary growths of timothy increased linearly with nitrogen rate during the initial 2–3 yr; ammonium nitrate and urea were equally effective in all but one harvest year. Total nitrogen production of timothy also increased linearly over the range of 30–120 kg N ha−1, while ammonium nitrate outyielded urea-fertilized timothy during one season in primary and two seasons out of four in secondary growth. Nitrogen losses increased from spring to summer, in general, with 68–75% of the variation explained by air temperature. Urea and ammonium nitrate were considered equivalent nitrogen sources for the primary growth of timothy but urea was less efficient in the secondary growth under summer conditions.Key words: Urea, ammonium nitrate, timothy, bromegrass, ammonia losses


Sign in / Sign up

Export Citation Format

Share Document