scholarly journals Relationships Between Molecular Interactions (Nucleotides, Lipids and Proteins) and Structural Features of the Bovine Brain 21-kDa Protein

1994 ◽  
Vol 225 (3) ◽  
pp. 1203-1210 ◽  
Author(s):  
Sophie Bucquoy ◽  
Pierre Jolles ◽  
Francoise Schoentgen
2015 ◽  
Vol 1799 ◽  
pp. 19-28
Author(s):  
Phuong-Truc T. Pham ◽  
Mamoun M. Bader

ABSTRACTWe present our findings on structural features and trends observed in single crystal structural studies for a series of oligothiophene and ethylenedioxythiophene (EDOT) molecules substituted with bromo and tricyanovinyl groups. The presence of a C=C bridge as well as the introduction of n-butyl solubilizing groups are also addressed. Focus of the work will be on how these structural modifications, in particular, how inter- and intra- molecular interactions impact planarity and packing of molecules in the observed crystal structures.


2017 ◽  
Vol 398 (7) ◽  
pp. 751-763 ◽  
Author(s):  
Maria-Pilar Fernandez ◽  
Montserrat Garcia ◽  
Silvia Martin-Almedina ◽  
Reginald O. Morgan

AbstractThe fundamental cellular role and molecular interactions of annexins in vesicle trafficking and membrane remodeling remain to be further clarified in order to better understand and exploit their contributions to health and disease. We focused on distinctive features of atypical annexins from all domains of life using phylogenomic, molecular systematic and experimental approaches, to extend the current paradigm and better account for annexin diversity of structure, function and mechanistic role in membrane homeostasis. The analysis of gene duplications, organization of domain architectures and profile hidden Markov models of subfamily orthologs defined conserved structural features relevant to molecular interactions and functional divergence of seven family clades ANXA-G. Single domain annexins of bacteria, including cyanobacteria, were frequently coupled to enzymatic units conceivably related to membrane metabolism and remodeling. Multiple ANX domains (up to 20) and various distinct functional domains were observed in unique annexins. Canonical type 2 calcium binding ligands were well-preserved in roughly half of all ANX domains, but alternative structural motifs comprised of ‘KGD’, cysteine or tryptophan residues were prominently conserved in the same strategic interhelical loops. Selective evolutionary constraint, site-specific location and co-occurrence in all kingdoms identify alternative modes of fundamental binding interactions for annexins.


2007 ◽  
Vol 35 (4) ◽  
pp. 689-691 ◽  
Author(s):  
E. Ganea ◽  
M. Trifan ◽  
A.C. Laslo ◽  
G. Putina ◽  
C. Cristescu

MMPs (matrix metalloproteinases) are zinc-dependent endopeptidases that degrade both matrix and non-matrix proteins. They play an important role in morphogenesis, and in a wide range of processes including tissue repair and remodelling. Their abnormal expression contributes to pathological processes including arthritis, cancer, and cardiac and central nervous system diseases, which explains the large interest in finding specific MMP inhibitors for therapeutic use. In this review we describe the structural features of MMPs, with special emphasis on their interaction with specific inhibitors. The effect of new, hydroxamatebased inhibitors on MMP isolated from bovine brain is evaluated.


Author(s):  
Gengchen Wang ◽  
Qian Zhou ◽  
Yan Xu ◽  
Baobing Zhao

Pleckstrin-2 is a member of pleckstrin family with well-defined structural features that was first identified in 1999. Over the past 20 years, our understanding of PLEK2 biology has been limited to cell spreading. Recently, increasing evidences support that PLEK2 plays important roles in other cellular events beyond cell spreading, such as erythropoiesis, tumorigenesis and metastasis. It serves as a potential diagnostic and prognostic biomarker as well as an attractive target for the treatment of cancers. Herein, we summary the protein structure and molecular interactions of pleckstrin-2, with an emphasis on its regulatory roles in tumorigenesis.


Author(s):  
O.C. de Hodgins ◽  
K. R. Lawless ◽  
R. Anderson

Commercial polyimide films have shown to be homogeneous on a scale of 5 to 200 nm. The observation of Skybond (SKB) 705 and PI5878 was carried out by using a Philips 400, 120 KeV STEM. The objective was to elucidate the structural features of the polymeric samples. The specimens were spun and cured at stepped temperatures in an inert atmosphere and cooled slowly for eight hours. TEM micrographs showed heterogeneities (or nodular structures) generally on a scale of 100 nm for PI5878 and approximately 40 nm for SKB 705, present in large volume fractions of both specimens. See Figures 1 and 2. It is possible that the nodulus observed may be associated with surface effects and the structure of the polymers be regarded as random amorphous arrays. Diffraction patterns of the matrix and the nodular areas showed different amorphous ring patterns in both materials. The specimens were viewed in both bright and dark fields using a high resolution electron microscope which provided magnifications of 100,000X or more on the photographic plates if desired.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
U. Aebi ◽  
P. Rew ◽  
T.-T. Sun

Various types of intermediate-sized (10-nm) filaments have been found and described in many different cell types during the past few years. Despite the differences in the chemical composition among the different types of filaments, they all yield common structural features: they are usually up to several microns long and have a diameter of 7 to 10 nm; there is evidence that they are made of several 2 to 3.5 nm wide protofilaments which are helically wound around each other; the secondary structure of the polypeptides constituting the filaments is rich in ∞-helix. However a detailed description of their structural organization is lacking to date.


Author(s):  
R.M. Glaeser ◽  
S.B. Hayward

Highly ordered or crystalline biological macromolecules become severely damaged and structurally disordered after a brief electron exposure. Evidence that damage and structural disorder are occurring is clearly given by the fading and eventual disappearance of the specimen's electron diffraction pattern. The fading and disappearance of sharp diffraction spots implies a corresponding disappearance of periodic structural features in the specimen. By the same token, there is a oneto- one correspondence between the disappearance of the crystalline diffraction pattern and the disappearance of reproducible structural information that can be observed in the images of identical unit cells of the object structure. The electron exposures that result in a significant decrease in the diffraction intensity will depend somewhat upon the resolution (Bragg spacing) involved, and can vary considerably with the chemical makeup and composition of the specimen material.


Author(s):  
Godfrey C. Hoskins ◽  
Betty B. Hoskins

Metaphase chromosomes from human and mouse cells in vitro are isolated by micrurgy, fixed, and placed on grids for electron microscopy. Interpretations of electron micrographs by current methods indicate the following structural features.Chromosomal spindle fibrils about 200Å thick form fascicles about 600Å thick, wrapped by dense spiraling fibrils (DSF) less than 100Å thick as they near the kinomere. Such a fascicle joins the future daughter kinomere of each metaphase chromatid with those of adjacent non-homologous chromatids to either side. Thus, four fascicles (SF, 1-4) attach to each metaphase kinomere (K). It is thought that fascicles extend from the kinomere poleward, fray out to let chromosomal fibrils act as traction fibrils against polar fibrils, then regroup to join the adjacent kinomere.


Author(s):  
Dean A. Handley ◽  
Jack T. Alexander ◽  
Shu Chien

In situ preparation of cell cultures for ultrastructural investigations is a convenient method by which fixation, dehydration and embedment are carried out in the culture petri dish. The in situ method offers the advantage of preserving the native orientation of cell-cell interactions, junctional regions and overlapping configurations. In order to section after embedment, the petri dish is usually separated from the polymerized resin by either differential cryo-contraction or solvation in organic fluids. The remaining resin block must be re-embedded before sectioning. Although removal of the petri dish may not disrupt the native cellular geometry, it does sacrifice what is now recognized as an important characteristic of cell growth: cell-substratum molecular interactions. To preserve the topographic cell-substratum relationship, we developed a simple method of tapered rotary beveling to reduce the petri dish thickness to a dimension suitable for direct thin sectioning.


Sign in / Sign up

Export Citation Format

Share Document