scholarly journals Novel domain architectures and functional determinants in atypical annexins revealed by phylogenomic analysis

2017 ◽  
Vol 398 (7) ◽  
pp. 751-763 ◽  
Author(s):  
Maria-Pilar Fernandez ◽  
Montserrat Garcia ◽  
Silvia Martin-Almedina ◽  
Reginald O. Morgan

AbstractThe fundamental cellular role and molecular interactions of annexins in vesicle trafficking and membrane remodeling remain to be further clarified in order to better understand and exploit their contributions to health and disease. We focused on distinctive features of atypical annexins from all domains of life using phylogenomic, molecular systematic and experimental approaches, to extend the current paradigm and better account for annexin diversity of structure, function and mechanistic role in membrane homeostasis. The analysis of gene duplications, organization of domain architectures and profile hidden Markov models of subfamily orthologs defined conserved structural features relevant to molecular interactions and functional divergence of seven family clades ANXA-G. Single domain annexins of bacteria, including cyanobacteria, were frequently coupled to enzymatic units conceivably related to membrane metabolism and remodeling. Multiple ANX domains (up to 20) and various distinct functional domains were observed in unique annexins. Canonical type 2 calcium binding ligands were well-preserved in roughly half of all ANX domains, but alternative structural motifs comprised of ‘KGD’, cysteine or tryptophan residues were prominently conserved in the same strategic interhelical loops. Selective evolutionary constraint, site-specific location and co-occurrence in all kingdoms identify alternative modes of fundamental binding interactions for annexins.

2021 ◽  
Vol 22 (23) ◽  
pp. 13036
Author(s):  
Normig M. Zoghbi-Rodríguez ◽  
Samuel David Gamboa-Tuz ◽  
Alejandro Pereira-Santana ◽  
Luis C. Rodríguez-Zapata ◽  
Lorenzo Felipe Sánchez-Teyer ◽  
...  

Nitrate transporter 2 (NRT2) and NRT3 or nitrate-assimilation-related 2 (NAR2) proteins families form a two-component, high-affinity nitrate transport system, which is essential for the acquisition of nitrate from soils with low N availability. An extensive phylogenomic analysis across land plants for these families has not been performed. In this study, we performed a microsynteny and orthology analysis on the NRT2 and NRT3 genes families across 132 plants (Sensu lato) to decipher their evolutionary history. We identified significant differences in the number of sequences per taxonomic group and different genomic contexts within the NRT2 family that might have contributed to N acquisition by the plants. We hypothesized that the greater losses of NRT2 sequences correlate with specialized ecological adaptations, such as aquatic, epiphytic, and carnivory lifestyles. We also detected expansion on the NRT2 family in specific lineages that could be a source of key innovations for colonizing contrasting niches in N availability. Microsyntenic analysis on NRT3 family showed a deep conservation on land plants, suggesting a high evolutionary constraint to preserve their function. Our study provides novel information that could be used as guide for functional characterization of these gene families across plant lineages.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3681 ◽  
Author(s):  
Evgenia I. Deryusheva ◽  
Andrey V. Machulin ◽  
Maxim A. Matyunin ◽  
Oxana V. Galzitskaya

S1 domain, a structural variant of one of the “oldest” OB-folds (oligonucleotide/oligosaccharide-binding fold), is widespread in various proteins in three domains of life: Bacteria, Eukaryotes, and Archaea. In this study, it was shown that S1 domains of bacterial, eukaryotic, and archaeal proteins have a low percentage of identity, which indicates the uniqueness of the scaffold and is associated with protein functions. Assessment of the predisposition of tertiary flexibility of S1 domains using computational and statistical tools showed similar structural features and revealed functional flexible regions that are potentially involved in the interaction of natural binding partners. In addition, we analyzed the relative number and distribution of S1 domains in all domains of life and established specific features based on sequences and structures associated with molecular functions. The results correlate with the presence of repeats of the S1 domain in proteins containing the S1 domain in the range from one (bacterial and archaeal) to 15 (eukaryotic) and, apparently, are associated with the need for individual proteins to increase the affinity and specificity of protein binding to ligands.


1977 ◽  
Author(s):  
G. Marguerie

The calcium binding properties of bovin fibrinogen have been studied using equilibrium dialysis method. At pH 7.5 fibrinogen has 3 specific calcium binding sites of high affinity and several non specific binding sites of low affinity. Direct titration of the calcium induced proton release indicates that the binding center is a chelate. Thermal an acid denaturation is found to be markedly influenced by the presence of Ca++, suggesting that structural features are related to the binding. However the circular dichroism spectra show that no generalized conformational change is induced when Ca++ is bound to the protein.The plasminic digestion of fibrinogen is also found to be specificaly influenced by Ca++. The velocity of the initial cleavages is slightly reduced in the presence of calcium. It is therefore suggested that the C-terminal part of the Aα chain is involved in the binding.Considering the dimeric structure of the fibrinogen molecule, the presence of only 3 calcium binding sites of high affinity suggests the existence of “salt bridges” between the constitutive polypeptide chains.


2019 ◽  
Vol 20 (6) ◽  
pp. 1425 ◽  
Author(s):  
Dongli Wang ◽  
Sen Meng ◽  
Wanlong Su ◽  
Yu Bao ◽  
Yingying Lu ◽  
...  

Poplar (Populus) is one of the most important woody plants worldwide. Drought, a primary abiotic stress, seriously affects poplar growth and development. Multiple organellar RNA editing factor (MORF) genes—pivotal factors in the RNA editosome in Arabidopsis thaliana—are indispensable for the regulation of various physiological processes, including organelle C-to-U RNA editing and plasmid development, as well as in the response to stresses. Although the poplar genome sequence has been released, little is known about MORF genes in poplar, especially those involved in the response to drought stress at the genome-wide level. In this study, we identified nine MORF genes in the Populus genome. Based on the structural features of MORF proteins and the topology of the phylogenetic tree, the P. trichocarpa (Ptr) MORF family members were classified into six groups (Groups I–VI). A microsynteny analysis indicated that two (22.2%) PtrMORF genes were tandemly duplicated and seven genes (77.8%) were segmentally duplicated. Based on the dN/dS ratios, purifying selection likely played a major role in the evolution of this family and contributed to functional divergence among PtrMORF genes. Moreover, analysis of qRT-PCR data revealed that PtrMORFs exhibited tissue- and treatment-specific expression patterns. PtrMORF genes in all group were involved in the stress response. These results provide a solid foundation for further analyses of the functions and molecular evolution of MORF genes in poplar, and, in particular, for improving the drought resistance of poplar by genetics manipulation.


Author(s):  
Linqiang Zhang ◽  
Tingting Zhu ◽  
Huilai Miao ◽  
Bin Liang

The calcium binding protein S100 family in humans contains 21 known members, with each possessing a molecular weight between 10 and 14 kDa. These proteins are characterized by a unique helix-loop-helix EF hand motif, and often form dimers and multimers. The S100 family mainly exists in vertebrates and exerts its biological functions both inside cells as a calcium sensor/binding protein, as well as outside cells. S100A11, a member of the S100 family, may mediate signal transduction in response to internal or external stimuli and it plays various roles in different diseases such as cancers, metabolic disease, neurological diseases, and vascular calcification. In addition, it can function as chemotactic agent in inflammatory disease. In this review, we first detail the discovery of S100 proteins and their structural features, and then specifically focus on the tissue and organ expression of S100A11. We also summarize its biological activities and roles in different disease and signaling pathways, providing an overview of S100A11 research thus far.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3941 ◽  
Author(s):  
Alejandra Panzera ◽  
Adam D. Leaché ◽  
Guillermo D’Elía ◽  
Pedro F. Victoriano

The genusLiolaemusis one of the most ecologically diverse and species-rich genera of lizards worldwide. It currently includes more than 250 recognized species, which have been subject to many ecological and evolutionary studies. Nevertheless,Liolaemuslizards have a complex taxonomic history, mainly due to the incongruence between morphological and genetic data, incomplete taxon sampling, incomplete lineage sorting and hybridization. In addition, as many species have restricted and remote distributions, this has hampered their examination and inclusion in molecular systematic studies. The aims of this study are to infer a robust phylogeny for a subsample of lizards representing the Chilean clade (subgenusLiolaemus sensu stricto), and to test the monophyly of several of the major species groups. We use a phylogenomic approach, targeting 541 ultra-conserved elements (UCEs) and 44 protein-coding genes for 16 taxa. We conduct a comparison of phylogenetic analyses using maximum-likelihood and several species tree inference methods. The UCEs provide stronger support for phylogenetic relationships compared to the protein-coding genes; however, the UCEs outnumber the protein-coding genes by 10-fold. On average, the protein-coding genes contain over twice the number of informative sites. Based on our phylogenomic analyses, all the groups sampled are polyphyletic.Liolaemus tenuis tenuisis difficult to place in the phylogeny, because only a few loci (nine) were recovered for this species. Topologies or support values did not change dramatically upon exclusion ofL. t. tenuisfrom analyses, suggesting that missing data did not had a significant impact on phylogenetic inference in this data set. The phylogenomic analyses provide strong support for sister group relationships betweenL. fuscus,L. monticola,L. nigroviridisandL. nitidus, andL. plateiandL. velosoi. Despite our limited taxon sampling, we have provided a reliable starting hypothesis for the relationships among many major groups of the Chilean clade ofLiolaemusthat will help future work aimed at resolving theLiolaemusphylogeny.


2017 ◽  
Vol 27 (4) ◽  
pp. 228-236 ◽  
Author(s):  
Aggeliki Skagia ◽  
Eleni Vezyri ◽  
Konstantinos Grados ◽  
Anastasia Venieraki ◽  
Michael Karpusas ◽  
...  

The presence of peptidyl-prolyl <i>cis</i>/<i>trans</i> isomerases (PPIases, EC: 5.2.1.8) in all domains of life indicates their biological importance. Cyclophilin PpiA, present in the periplasm of gram-negative bacteria, possesses PPIase activity but its physiological functions<b> </b>are still not clearly defined. Here, we demonstrate that the &#x0394;<i>ppiA</i> deletion strain from <i>Escherichia coli</i> exhibits an increased ability for biofilm formation and enhanced swimming motility compared to the wild-type strain. To identify structural features of PpiA which are necessary for the negative modulation of biofilm formation, we constructed a series of mutant PpiA proteins using a combination of error-prone and site-directed mutagenesis approaches. We show that the negative effect of PpiA on biofilm formation is not dependent on its PPIase activity, since PpiA mutants with a reduced PPIase activity are able to complement the &#x0394;<i>ppiA</i> strain during biofilm growth.


2009 ◽  
Vol 9 (1) ◽  
pp. 137 ◽  
Author(s):  
Yu-Juan Zhang ◽  
Hai-Feng Tian ◽  
Jian-Fan Wen

2018 ◽  
Vol 2 (4) ◽  
pp. 647-657 ◽  
Author(s):  
Robert Reichelt ◽  
Dina Grohmann ◽  
Sarah Willkomm

Sm-like (Lsm) proteins are found in all three domains of life. They are crucially involved in the RNA metabolism of prokaryotic organisms. To exert their function, they assemble into hexa- or heptameric rings and bind RNA via a conserved binding pocket for uridine stretches in the inner pore of the ring. Despite the conserved secondary structure of Lsm proteins, there are several features that lead to a structural diversification of this protein family that mediates their participation in a variety of processes related to RNA metabolism. Until recently, the cellular function of archaeal Sm-like proteins was not well understood. In this review, we discuss structural features of Lsm proteins with a strong focus on archaeal variants, reflect on the evolutionary development of archaeal Lsm proteins and present recent insights into their biological function.


Sign in / Sign up

Export Citation Format

Share Document