scholarly journals Decreased docosahexaenoic acid and other specific fatty acids in a mouse model of retinal degeneration

2022 ◽  
Vol 100 (S267) ◽  
Author(s):  
María José Ruiz Pastor ◽  
Oksana Kutsyr ◽  
Henar Albertos‐Arranz ◽  
Xavier Sánchez‐Sáez ◽  
Carla Sánchez‐Castillo ◽  
...  
Nutrients ◽  
2017 ◽  
Vol 9 (10) ◽  
pp. 1079 ◽  
Author(s):  
Maurizio Cammalleri ◽  
Massimo Dal Monte ◽  
Filippo Locri ◽  
Emma Lardner ◽  
Anders Kvanta ◽  
...  

2021 ◽  
Vol 205 ◽  
pp. 108480
Author(s):  
Mansour Rahimi ◽  
Sophie Leahy ◽  
Nathanael Matei ◽  
Norman P. Blair ◽  
Shinwu Jeong ◽  
...  

2021 ◽  
Author(s):  
Xiaodan Lu ◽  
Rongbin Zhong ◽  
Ling Hu ◽  
Luyao Huang ◽  
Lijiao Chen ◽  
...  

Abstract Large yellow croaker roe phospholipids (LYCRPLs) has great nutritional value because of containing rich docosahexaenoic acid (DHA), which is a kind of n-3 polyunsaturated fatty acids (n-3 PUFAs). In...


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 113
Author(s):  
Marine Remize ◽  
Yves Brunel ◽  
Joana L. Silva ◽  
Jean-Yves Berthon ◽  
Edith Filaire

N-3 polyunsaturated fatty acids (n-3 PUFAs), and especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential compounds for human health. They have been proven to act positively on a panel of diseases and have interesting anti-oxidative, anti-inflammatory or anti-cancer properties. For these reasons, they are receiving more and more attention in recent years, especially future food or feed development. EPA and DHA come mainly from marine sources like fish or seaweed. Unfortunately, due to global warming, these compounds are becoming scarce for humans because of overfishing and stock reduction. Although increasing in recent years, aquaculture appears insufficient to meet the increasing requirements of these healthy molecules for humans. One alternative resides in the cultivation of microalgae, the initial producers of EPA and DHA. They are also rich in biochemicals with interesting properties. After defining macro and microalgae, this review synthesizes the current knowledge on n-3 PUFAs regarding health benefits and the challenges surrounding their supply within the environmental context. Microalgae n-3 PUFA production is examined and its synthesis pathways are discussed. Finally, the use of EPA and DHA in food and feed is investigated. This work aims to define better the issues surrounding n-3 PUFA production and supply and the potential of microalgae as a sustainable source of compounds to enhance the food and feed of the future.


2014 ◽  
Vol 60 (5) ◽  
pp. 267-275 ◽  
Author(s):  
Valeria A. Torok ◽  
Nigel J. Percy ◽  
Peter J. Moate ◽  
Kathy Ophel-Keller

The rumen microbiota contributes to greenhouse gas emissions and has an impact on feed efficiency and ruminant product fatty acid composition. Dietary fat supplements have shown promise in reducing enteric methane production and in altering the fatty acid profiles of ruminant-derived products, yet in vivo studies on how these impact the rumen microbiota are limited. In this study, we investigated the rumen bacterial, archaeal, fungal, and ciliate protozoan communities of dairy cows fed diets supplemented with 4 levels of docosahexaenoic acid (DHA) (0, 25, 50, and 75 g·cow−1·day−1) and established linkages between microbial communities and production parameters. Supplementation with DHA significantly (P < 0.05) altered rumen bacterial and archaeal, including methanogenic archaeal, communities but had no significant (P > 0.05) effects on rumen fungal or ciliate protozoan communities. Rumen bacterial communities of cows receiving no DHA were correlated with increased saturated fatty acids (C18:0 and C11:0) in their milk. Furthermore, rumen bacterial communities of cows receiving a diet supplemented with 50 g DHA·cow−1·day−1 were correlated with increases in monounsaturated fatty acids (C20:1n-9) and polyunsaturated fatty acids (C22:5n-3; C22:6n-3; C18:2 cis-9, trans-11; C22:3n-6; and C18:2n-6 trans) in their milk. The significant diet-associated changes in rumen archaeal communities observed did not result in altered enteric methane outputs in these cows.


1998 ◽  
Vol 4 (6) ◽  
pp. 401-405 ◽  
Author(s):  
V.J. Robles ◽  
H.S. García ◽  
J.A. Monroy ◽  
O. Angulo

Menhaden oil was hydrolyzed using a lipase from Pseudomonas sp. The hydrolysate was cold frac tionated at-72°C. Glyceride synthesis was performed using the same lipase under different reaction environments. The best conditions for the esterification reaction were 39 °C for 18 h in a reaction mixture containing anhydrous glycerol, n-3 polyunsaturated fatty acids (PUFA) enriched solution (2% lipids in hexane), hexane, and phosphate buffer-lipase solution (1% w/v). Product composition was 81.33% triacylglycerides and 18.67% of free fatty acids (w/w). Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) accounted for 36.18% of the esterified fatty acids, of which 58% was EPA and 42% was DHA. This method offers an alternative to produce glycerides rich in n-3 PUFA.


Sign in / Sign up

Export Citation Format

Share Document