The influence of various reef sounds on coral-fish larvae behaviour

2015 ◽  
Vol 86 (5) ◽  
pp. 1507-1518 ◽  
Author(s):  
E. Parmentier ◽  
L. Berten ◽  
P. Rigo ◽  
F. Aubrun ◽  
S. L. Nedelec ◽  
...  
Keyword(s):  

1999 ◽  
Vol 30 (2) ◽  
pp. 73 ◽  
Author(s):  
E Ringø,


2020 ◽  
Vol 650 ◽  
pp. 289-308 ◽  
Author(s):  
V Raya ◽  
J Salat ◽  
A Sabatés

This work develops a new method, the box-balance model (BBM), to assess the role of hydrodynamic structures in the survival of fish larvae. The BBM was applied in the northwest Mediterranean to field data, on 2 small pelagic fish species whose larvae coexist in summer: Engraulis encrasicolus, a dominant species, and Sardinella aurita, which is expanding northwards in relation to sea warming. The BBM allows one to quantify the contribution of circulation, with significant mesoscale activity, to the survival of fish larvae, clearly separating the effect of transport from biological factors. It is based on comparing the larval abundances at age found in local target areas, associated with the mesoscale structures (boxes), to those predicted by the overall mortality rate of the population in the region. The application of the BBM reveals that dispersion/retention by hydrodynamic structures favours the survival of E. encrasicolus larvae. In addition, since larval growth and mortality rates of the species are required parameters for application of the BBM, we present their estimates for S. aurita in the region for the first time. Although growth and mortality rates found for S. aurita are both higher than for E. encrasicolus, their combined effect confers a lower survival to S. aurita larvae. Thus, although the warming trend in the region would contribute to the expansion of the fast-growing species S. aurita, we can confirm that E. encrasicolus is well established, with a better adapted survival strategy.



2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Moh. Rasyid Ridho ◽  
Enggar Patriono ◽  
Sarno Sarno ◽  
Sahira Wirda

The initial phase of the fish life cycle is a critical phase associated with high mortality due to sensitivity to predators, food availability, and also environmental changes that occur in nature. Disruption of the initial stages of fish life has a negative impact on fish populations. Until now there has been no information about fish larvae around the Banyuasin River Estuary. Therefore, research is needed on the diversity of fish larvae around the Banyuasin River Estuary, South Sumatra Province. This research were used purposive sampling method, sampling technique in the form of Cruise Track Design with continuous parallel survey trajectory. Based on the results of the study found as many as 10 families consisting of 1483 individuals of fish larvae in March and 1013 individuals of fish larvae in May consisting of Engraulidae 1,601 individuals of fish larvae, Mungiloidei as many as 109 individuals, Leiognathidae 50 individuals, Chanidae 453 individuals, Scatophagidae 20 individuals , Belonidae 39 individuals, Gobioididae 5 individuals, Chandidae 183 individuals, Syngnatihidae 6 individuals, and Gobiidae 30 individuals fish larvae. The index value of fish larvae diversity is classified as medium category (March 1.02 and May 1.12), Morisita index shows the distribution pattern of fish larvae classified as a group (March 0-14.17 and May 2.43-10.40 ), and the evenness index value is in the medium category (March 0.437 and May 0.521).



2017 ◽  
Vol 5 (1) ◽  
Author(s):  
Erwin A. Aziz ◽  
Ockstan Kalesaran

This study aimed to determine the effect of ovaprim hormone, aromatase inhibitor and pituitary on the quality of the catfish eggs (Clarias gariepinus). Experimental Design used was Completely Randomized Design (CRD) with four treatments, each with three replications. Treatment A: ovaprim; treatment B: Aromatase inhibitors, treatment C: hypophysis and treatment D: Control. The results showed that the difference in treatment gave highly significant effect on fertilization and hatching eggs but no significant effect on the survival rate of larvae. Aromatase inhibitor hormone was the best because it provided highly significant effect on fertilization (92.66%), hatchability of eggs (95%), and surviva rate (81.33%) of fish larvae.   Keywords : Clarias gariepinus. Ovaprim, Aromatase Inhibitor, Hypophysis, egg, larvae



2013 ◽  
Vol 1 (2) ◽  
pp. 143
Author(s):  
Petrus P Letsoin ◽  
Henneke Pangkey ◽  
Julius Sampekalo ◽  
Inneke F.M Rumengan ◽  
Stenly Wullur ◽  
...  

The rotifer Brachionus rotundiformis (total body length 240.59±10.24 μm, lorica length 175.28±9.18 μm, and lorica width 124.28±7.76μm) is commonly used as starter food in the larval rearing of marine fish. But, larvae of some marine tropical fish species required starter food with body size smaller than B. rotundiformis. The present study was aimed to isolate minute rotifers from nature and to assess the possibility of culturing these rotifers. Sampling of rotifers was conducted in an estuary of Mangket (Kema-Minut), using plankton net (mesh size 40 µm). A trial of culturing the rotifers was conducted at salinities of 10, 20 and 30 ppt by using a microalga, Nannochloropsis oculata. A species of rotifer identified as Colurella sp. (family Lepadellidae) was successfully isolated from the sampling location. Body size of Colurella sp. was extremely small (Total length 123.22±5.45 μm, lorica length 95.96±3.81 μm, and lorica width 53.57±3.11 μm), which were smaller than Brachionus rotundiformis SS-type as a conventional starter food for marine fish larvae.  Results of culturing the minute rotifer Colurella sp. showed that the species grew well at salinities of 10, 20 and 30 ppt with no significant difference among treatments (ANOVA, p>0.05), indicating a potential use of minute rotifer Colurellasp. as starter food for marine fish larvae. Rotifera Branchionus rotundiformis (ukuran tubuh: panjang total 240,59±10,24 μm, panjang lorika 175,28±9,18 μm, dan lebar lorika 124,28±7,76μm) sering digunakan sebagai pakan awal pemeliharaan larva ikan laut. Namun, larva beberapa spesis ikan laut tropis membutuhkan pakan awal berukuran tubuh lebih kecil dari Branchionus rotundiformis. Penelitian ini bertujuan untuk mendapatkan minute rotifer dari alam (berukuran tubuh lebih kecil dari B. rotundiformis) dan menguji kemungkinan pemeliharaannya. Sampling rotifer dilakukan di perairan estuari Desa Mangket (Kema-Minut), menggunakan plankton net (ukuran mata jaring 40 µm). Uji coba pemeliharaan dilakukan pada salinitas (10, 20, dan 30 ppt) dengan menggunakan Nannochloropsis oculata. Satu spesies minute rotifer yang teridentifikasi sebagai Colurella sp. (family Lepadellidae) berhasil diisolasi dari lokasi sampling. Colurella sp. memiliki ukuran tubuh sangat kecil (panjang total [PT] 123,22±5,45 µm, panjang lorika [PL] 95,96±3,81 µm, dan lebar lorik [LL] 53,57±3,11 µm) yang mana lebih kecil dari Branchionus rotundiformis tipe-SS sebagai pakan awal larva ikan laut. Hasil uji coba pemeliharaan minute rotifer Colurella sp. menunjukkan bahwa spesis ini dapat tumbuh pada salinitas 10, 20, dan 30 ppt dengan perbedaan kepadatan populasi yang tidak signifikan antar perlakuan (Uji ANOVA, p > 0.05) mengindikasikan potensi pemanfaatan minute rotifer Colurella sp. sebagai pakan awal larva ikan laut.





1981 ◽  
Vol 21 (3) ◽  
pp. 1503-1506
Author(s):  
F. T. Widjaja ◽  
S. Suwignyo
Keyword(s):  


Oceans ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 1-25
Author(s):  
Jeffrey M. Leis

Biophysical dispersal models for marine fish larvae are widely used by marine ecologists and managers of fisheries and marine protected areas to predict movement of larval fishes during their pelagic larval duration (PLD). Over the past 25 years, it has become obvious that behaviour—primarily vertical positioning, horizontal swimming and orientation—of larvae during their PLD can strongly influence dispersal outcomes. Yet, most published models do not include even one of these behaviours, and only a tiny fraction include all three. Furthermore, there is no clarity on how behaviours should be incorporated into models, nor on how to obtain the quantitative, empirical data needed to parameterize models. The PLD is a period of morphological, physiological and behavioural change, which presents challenges for modelling. The present paper aims to encourage the inclusion of larval behaviour in biophysical dispersal models for larvae of marine demersal fishes by providing practical suggestions, advice and insights about obtaining and incorporating behaviour of larval fishes into such models based on experience. Key issues are features of different behavioural metrics, incorporation of ontogenetic, temporal, spatial and among-individual variation, and model validation. Research on behaviour of larvae of study species should be part of any modelling effort.



Aquaculture ◽  
1989 ◽  
Vol 79 (1-4) ◽  
pp. 85-89 ◽  
Author(s):  
P.E. Hansen ◽  
E. Lied ◽  
T. Børresen


2021 ◽  
Vol 9 (3) ◽  
pp. 316
Author(s):  
Yuting Feng ◽  
Lijun Yao ◽  
Hui Zhao ◽  
Jing Yu ◽  
Zhaojin Lin

Spawning grounds occupy an important position in the survival and reproduction of aquatic life, which plays an important role in the replenishment of fishery resources, especially in the China coasts where fishery resources are depleting. This study investigated environmental effects on the spatiotemporal variability of fish larvae in the western Guangdong waters (WGWs), on the basis of generalized additive models (GAMs) and center of gravity (CoG). Satellite data including sea surface salinity (SSS), sea surface temperature (SST), and in situ observations for fish larvae from April to June in 2014–2015 were used. Results showed that 40.3% of the total variation in fish larvae density was explained. SST, SSS, and depth showed positive effects in 23–24 °C and 27–30 °C, 24–32 PSU, and 0–60 m, and showed negative effects in 24–27 °C, 32–34.2 PSU, 60–80 m. Based on the stepwise GAMs, the most important factor was month, with a contribution of 10.6%, followed by longitude, offshore distance, depth, and latitude, with contributions of 7.0%, 7.0%, 6.3%, 4.2%, 3.9%, and 1.3%, respectively. Fish larvae CoG shifted northward by 0.6° N and eastwards by 0.13° E from April to June. The distribution of fish larvae in the WGWs was affected by complex submarine topography in the Qiongzhou Strait, coastal upwelling in the WGWs, and runoff from the Pearl River.



Sign in / Sign up

Export Citation Format

Share Document