Antioxidant‐rich fraction of Amomum subulatum fruits mitigates experimental methotrexate‐induced oxidative stress by regulating TNF‐α, IL‐1β, and IL‐6 proinflammatory cytokines

Author(s):  
Sudarsanan Drishya ◽  
Suresh Sulekha Dhanisha ◽  
Chandrasekharan Guruvayoorappan

2013 ◽  
Vol 40 (6) ◽  
pp. 943-948 ◽  
Author(s):  
Sara De Sanctis ◽  
M. Loredana Marcovecchio ◽  
Stefania Gaspari ◽  
Marianna Del Torto ◽  
Angelika Mohn ◽  
...  

Objective.To investigate the effect of 1-year treatment with the anti-tumor necrosis factor-α (TNF-α) drug etanercept on lipid profile and oxidative stress in children and adolescents with juvenile idiopathic arthritis (JIA).Methods.Thirty children with JIA (22 females; mean age 12.3 ± SD 5.7 yrs), all eligible for anti-TNF-α treatment, were assessed at baseline and after 6- and 12-month treatment with etanercept. Disease activity was determined using the Juvenile Arthritis Disease Activity Score (JADAS). Blood samples were drawn to measure the acute-phase reactants C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), lipids, and the proinflammatory cytokines TNF-α, interleukin-1β (IL-1β), IL-6 and interferon-γ. To measure the oxidative stress marker 8-iso-prostaglandin F2α, 24-h urine samples were collected.Results.Inflammatory indicators (CRP and ESR) and JADAS scores improved significantly after 1 year of etanercept treatment (all p < 0.001). Proinflammatory cytokines showed significant reduction during the study period (all p < 0.001). Similar reductions were detected in total cholesterol (p < 0.001), low-density lipoprotein cholesterol (p = 0.04), and triglycerides (p < 0.001), whereas no significant change was found in high-density lipoprotein cholesterol. No side effects were observed during the treatment period.Conclusion.This study shows for the first time that anti-TNF-α therapy for JIA is associated not only with a beneficial effect on clinical disease activity and inflammatory indexes, but also with improved lipid profile and oxidative stress. These findings suggest that TNF-α blockers might reduce atherosclerotic risk in children with JIA.



2020 ◽  
Vol 10 (2) ◽  
pp. 204589402092212
Author(s):  
Yan Zhou ◽  
Lianjie Zhang ◽  
Jingjing Guan ◽  
Xin Yin

Lung ischemia–reperfusion injury (LIRI) is a common clinical concern. As the injury occurs, the pulmonary afferent nerves play a key role in regulating respiratory functions under pathophysiological conditions. The present study was to examine the effects of inhibiting microRNA-155 on the levels of proinflammatory cytokines and products of oxidative stress in the pulmonary vagal afferent nerves and the commissural nucleus of the solitary tract (cNTS) after LIRI. A rat model of LIRI was used. ELISA method was employed to examine proinflammatory cytokines, namely, IL-1β, IL-6 and TNF-α; and key biomarkers of oxidative stress, 8-isoprostaglandin F2α (8-iso PGF2α) and 8-hydroxy-2′-deoxyguanosine (8-OHdG). In results, in the process of LIRI, the levels of microRNA-155 were amplified in the vagal afferent nerves and cNTS, and this was accompanied with increases of IL-1β, IL-6 and TNF-α; and 8-iso PGF2α and 8-OHdG. Application of microRNA-155 inhibitor, but not its scramble, attenuated the elevation of proinflammatory cytokines and amplification of 8-iso PGF2α and 8-OHdG in those nerve tissues. In conclusion, we observed the abnormalities in the pulmonary afferent pathways at the levels of the peripheral nerves and brainstem, which is likely to affect respiratory functions as LIRI occurs. Our data suggest that blocking microRNA-155 signal pathways plays a beneficial role in regulating LIRI via inhibiting responses of neuroinflammation and oxidative stress signal pathways to LIRI.



2020 ◽  
Vol 25 (40) ◽  
pp. 4310-4317 ◽  
Author(s):  
Lichao Sun ◽  
Shouqin Ji ◽  
Jihong Xing

Background/Aims: Central pro-inflammatory cytokine (PIC) signal is involved in neurological deficits after transient global ischemia induced by cardiac arrest (CA). The present study was to examine the role of microRNA- 155 (miR-155) in regulating IL-1β, IL-6 and TNF-α in the hippocampus of rats with induction of CA. We further examined the levels of products of oxidative stress 8-isoprostaglandin F2α (8-iso PGF2α, indication of oxidative stress); and 8-hydroxy-2’-deoxyguanosine (8-OHdG, indication of protein oxidation) after cerebral inhibition of miR-155. Methods: CA was induced by asphyxia and followed by cardiopulmonary resuscitation in rats. ELISA and western blot analysis were used to determine the levels of PICs and products of oxidative stress; and the protein expression of NADPH oxidase (NOXs) in the hippocampus. In addition, neurological severity score and brain edema were examined to assess neurological functions. Results: We observed amplification of IL-1β, IL-6 and TNF-α along with 8-iso PGF2α and 8-OHdG in the hippocampus of CA rats. Cerebral administration of miR-155 inhibitor diminished upregulation of PICs in the hippocampus. This also attenuated products of oxidative stress and upregulation of NOX4. Notably, inhibition of miR-155 improved neurological severity score and brain edema and this was linked to signal pathways of PIC and oxidative stress. Conclusion: We showed the significant role of blocking miR-155 signal in improving the neurological function in CA rats likely via inhibition of signal pathways of neuroinflammation and oxidative stress, suggesting that miR-155 may be a target in preventing and/or alleviating development of the impaired neurological functions during CA-evoked global cerebral ischemia.



2018 ◽  
Vol 24 (17) ◽  
pp. 1905-1911 ◽  
Author(s):  
Maria Luz Fernandez ◽  
Minu Sara Thomas ◽  
Bruno S. Lemos ◽  
Diana M. DiMarco ◽  
Amanda Missimer ◽  
...  

Background: Telomerase Activator 65 (TA-65), a compound extracted from Astragalus membranaceus has been used in Chinese traditional medicine for extending lifespan. Scarce information exists on the effects of TA-65 on parameters of metabolic syndrome (MetS). Methods: We recruited 40 patients with MetS to determine the effects of TA-65 on dyslipidemias, hypertension, and oxidative stress in this at-risk population. The study was a double-blind, randomized crossover design in which patients were allocated to consume either 16 mg daily of a TA-65 supplement or a placebo for 12 weeks. Following a 3-week washout, participants were allocated to the alternate treatment for an additional 12 weeks. Anthropometric and biological markers were measured at the end of each treatment. Plasma lipids, glucose, CReactive Protein (CRP), liver enzymes, and glycosylated hemoglobin were measured using a Cobas c-111. Inflammatory cytokines were measured by Luminex technology and markers of oxidative stress by the use of spectroscopy. Results: Compared to the placebo period, HDL cholesterol (HDL-C) was higher while body mass index, waist circumference, and the LDL/HDL ratio were lower (p < 0.05) during TA-65 treatment. In addition, plasma tumor necrosis factor-α (TNF-α) was lower during the TA-65 period (p< 0.05). Positive correlations were observed in changes between the placebo and the TA-65 periods in HDL-C and CRP (r = -0.511, p < 0.01), alanine aminotransferase (r = -0.61, p < 0.001) and TNF-α (r = -0.550, p < 0.001) suggesting that the favorable changes observed in HDL were associated with decreases in inflammation. Conclusion: TA-65 improved key markers of cardiovascular disease risk, which were also associated with reductions in inflammation.



Author(s):  
Tongtong Zhao ◽  
Kai Zhang ◽  
Yelei Zhang ◽  
Yating Yang ◽  
Xiaoshuai Ning ◽  
...  

Abstract Rationale and objective Clozapine (CLZ) is the most effective drug for treatment-resistant schizophrenia but is associated with many side effects, including glycometabolism disorders. Immunological mechanisms may be involved in the development of clozapine side effects. Research relating the immunomodulatory effects of clozapine and its early markers to clinically relevant adverse events is needed to reduce the harmful side effects of clozapine. This study aimed to investigate the role of proinflammatory cytokines in clozapine-associated glycometabolism disorders. Methods We measured the effect of a range of doses of clozapine on glycometabolism-related parameters and proinflammatory cytokines levels in mice peripheral blood. We also examined the differences between these indicators in the peripheral blood of clozapine-treated schizophrenia patients and healthy controls. Furthermore, we detected proinflammatory cytokines expression in mice pancreatic tissue. Results Following clozapine administration, glucagon significantly decreased in mouse serum, and proinflammatory cytokine IL-β levels markedly increased. Clozapine reliably increased proinflammatory cytokines (IL-1β, IL-6, and TNF-α) expression in murine pancreatic tissue. Compared with healthy controls, clozapine-treated patients’ BMI, blood glucose, and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) increased significantly. In clozapine-treated patients, a higher clozapine daily dosage was associated with higher levels of the proinflammatory cytokines IL-1β and IL-6, and a significant positive correlation was observed between blood glucose levels and the proinflammatory cytokines IL-6 and TNF-α. Conclusion Findings from animal experiments and clinical trials have shown clear evidence that clozapine has a regulatory effect on immune-related proinflammatory cytokines and influences glycometabolism indicators.



2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
L Falcone ◽  
E Aruffo ◽  
P Di Carlo ◽  
P Del Boccio ◽  
M C Cufaro ◽  
...  

Abstract Background Reactive oxygen species (ROS) and oxidative stress in the respiratory system are involved in lung inflammation and tumorigenesis. Ozone (O3) is one of the main components of air pollution in urban areas able to act as strong pro-oxidant agent, however its effects on human health is still poorly investigated. In this study the effect of O3 has been evaluated in THP-1 monocytes differentiated into macrophages with PMA and in HBEpC (primary human bronchial epithelial) cells, two model systems for in vitro studies and translational research. Methods Cell viability, ROS and pro-inflammatory cytokines like interleukin-8(IL-8) and tumor necrosis factor(TNF-α) have been tested in the above-mentioned cell lines not exposed to any kind of pollution (basal condition-b.c.) or exposed to O3 at a concentration of 120 ppb. In HBEpC a labelfree shotgun proteomics analysis has been also performed in the same conditions. Results Ozone significantly increased the production of IL-8 and TNF-α in THP-1 whereas no changes were shown in HBEpC. In both cell lines lipopolysaccharide(LPS) caused an increase of IL-8 and TNF-α production in b.c. and O3 treatment potentiated this effect. Ozone exposure increased ROS formation in a time dependent manner in both cell lines and in THP-1 cells a decrease in catalase activity was also shown. Finally, according to these data, functional proteomics analysis revealed that in HBEpC exposure to O3 many differential proteins are related to oxidative stress and inflammation. Conclusions Our results indicate that O3, at levels that can be reached in urban areas, causes an increase of pro-inflammatory agents either per se or potentiating the effect of immune response stimulators in cell models of human macrophages and human airway epithelial cells. Interestingly, the proteomic analysis showed that besides the dysregulated proteins, O3 induced the expression of AKR1D1 and AKR1B10, proteins recognized to play a significant role in cancer development. Key messages This study adds new pieces of information on the association between O3 exposure and detrimental effects on respiratory system. This study suggests the need for further research on the mechanisms involved and for a continued monitoring/re-evaluation of air pollution standards aimed at safeguarding human health.



Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3442
Author(s):  
Yaowared Chulikhit ◽  
Wichitsak Sukhano ◽  
Supawadee Daodee ◽  
Waraporn Putalun ◽  
Rakvajee Wongpradit ◽  
...  

The effects of the phytoestrogen-enriched plant Pueraria mirifica (PM) extract on ovari-ectomy (OVX)-induced cognitive impairment and hippocampal oxidative stress in mice were investigated. Daily treatment with PM and 17β-estradiol (E2) significantly elevated cognitive behavior as evaluated by using the Y maze test, the novel object recognition test (NORT), and the Morris water maze test (MWM), attenuated atrophic changes in the uterus and decreased serum 17β-estradiol levels. The treatments significantly ameliorated ovariectomy-induced oxidative stress in the hippocampus and serum by a decrease in malondialdehyde (MDA), an enhancement of superoxide dismutase, and catalase activity, including significantly down-regulated expression of IL-1β, IL-6 and TNF-α proinflammatory cytokines, while up-regulating expression of PI3K. The present results suggest that PM extract suppresses oxidative brain damage and dysfunctions in the hippocampal antioxidant system, including the neuroinflammatory system in OVX animals, thereby preventing OVX-induced cognitive impairment. The present results indicate that PM exerts beneficial effects on cognitive deficits for which menopause/ovariectomy have been implicated as risk factors.



Pharmacology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Naseratun Nessa ◽  
Miyuki Kobara ◽  
Hiroe Toba ◽  
Tetsuya Adachi ◽  
Toshiro Yamamoto ◽  
...  

Introduction: Periodontitis is a lifestyle-related disease that is characterized by chronic inflammation in gingival tissue. Febuxostat, a xanthine oxidase inhibitor, exerts anti-inflammatory and antioxidant effects. Objective: The present study investigated the effects of febuxostat on periodontitis in a rat model. Methods: Male Wistar rats were divided into 3 groups: control, periodontitis, and febuxostat-treated periodontitis groups. Periodontitis was induced by placing a ligature wire around the 2nd maxillary molar and the administration of febuxostat (5 mg/kg/day) was then initiated. After 4 weeks, alveolar bone loss was assessed by micro-computed tomography and methylene blue staining. The expression of osteoprotegerin (OPG), a bone resorption inhibitor, was detected by quantitative RT-PCR and immunological staining, and the number of osteoclasts in gingival tissue was assessed by tartrate-resistant acid phosphatase staining. The mRNA and protein expression levels of the proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β), in gingival tissue were measured using quantitative RT-PCR and immunological staining. Oxidative stress in gingival tissue was evaluated by the expression of 4-hydroxy-2-nonenal (4-HNE), and 8-hydroxy-2-deoxyguanosine (8-OHdG). To clarify the systemic effects of periodontitis, blood pressure and glucose tolerance were examined. Results: In rats with periodontitis, alveolar bone resorption was associated with reductions in OPG and increases in osteoclast numbers. The gingival expression of TNF-α, IL-1β, 4-HNE, and 8-OHdG was up-regulated in rats with periodontitis. Febuxostat significantly reduced alveolar bone loss, proinflammatory cytokine levels, and oxidative stress. It also attenuated periodontitis-induced glucose intolerance and blood pressure elevations. Conclusion: Febuxostat prevented the progression of periodontitis and associated systemic effects by inhibiting proinflammatory mediators and oxidative stress.



2021 ◽  
Vol 11 (8) ◽  
pp. 3637
Author(s):  
Jun-Ho Chang ◽  
Dae-Won Kim ◽  
Seong-Gon Kim ◽  
Tae-Woo Kim

Damaged dental pulp undergoes oxidative stress and 4-hexylresorcinol (4HR) is a well-known antioxidant. In this study, we aimed to evaluate the therapeutic effects of a 4HR ointment on damaged dental pulp. Pulp cells from rat mandibular incisor were cultured and treated with 4HR or resveratrol (1–100 μM). These treatments (10–100 μM) exerted a protective effect during subsequent hydrogen peroxide treatments. The total antioxidant capacity and glutathione peroxidase activity were significantly increased following 4HR or resveratrol treatment (p < 0.05), while the expression levels of TNF-α and IL1β were decreased following the exposure to 4HR pre-treatment in an in vitro model. Additionally, the application of 4HR ointment in an exposed dental pulp model significantly reduced the expression of TNF-α and IL1β (p < 0.05). Conclusively, 4HR exerted protective effects against oxidative stress in dental pulp tissues through downregulating TNF-α and IL1β.



Sign in / Sign up

Export Citation Format

Share Document