Changes in Phytochemical and Antioxidant Potential of Tempeh Common Bean Flour from Two Selected Cultivars Influenced by Temperature and Fermentation Time

2015 ◽  
Vol 40 (2) ◽  
pp. 270-278 ◽  
Author(s):  
Claudia I. Gamboa-Gómez ◽  
Abigail Muñoz-Martínez ◽  
Nuria E. Rocha-Guzmán ◽  
J. Alberto Gallegos-Infante ◽  
Martha R. Moreno-Jiménez ◽  
...  
2003 ◽  
Vol 66 (12) ◽  
pp. 2313-2320 ◽  
Author(s):  
ROSA DOBLADO ◽  
JUANA FRIAS ◽  
ROSARIO MUÑOZ ◽  
CONCEPCIÓN VIDAL-VALVERDE

Natural fermentation and an inoculum containing 10% (vol/vol) Lactobacillus fermentum or Lactobacillus plantarum were used to obtain fermented flours from Vigna sinensis L. var. carilla seeds that had been washed with distilled water and dried at 55°C for 24 h. To optimize the fermentation parameters (lactic acid bacterium level, bean flour concentration, and fermentation time), several small-scale fermentation processes were carried out. On the basis of the results obtained, fermentor-scale bean fermentation by microorganisms present on the seeds (natural fermentation [NF]) or by inoculation with L. plantarum (PF) was carried out at 37°C for 48 h with a concentration of 300 g of bean flour per liter. The fermented flours (NF and PF) were also autoclaved. The levels of α-galactosides, inositol phosphates, trypsin inhibitor activity (TIA), soluble carbohydrates, starch (total and available), total available carbohydrates, thiamin, and riboflavin were determined for the processed cowpea flours, and microbiological studies were also carried out. The beans' levels of α-galactosides, TIA, and inositol hexaphosphate decreased by 95, 50, and 85%, respectively, for the NF flour and by 87, 27, and 85%, respectively, for the PF flour, while inositol pentaphosphate and inositol tetraphosphate were present in both fermented flours. The sucrose content decreased, and glucose, fructose, and galactose appeared as a result of fermentation. The levels of total available sugars and thiamin decreased by 2 and 12% and by 69 and 43%, respectively, while the riboflavin content increased by 106 and 94% for NF and PF flours, respectively. When NF and PF cowpea flours were heated in an autoclave for 20 min, TIA decreased further (by 80 and 56%, respectively). According to the chemical and microbiological results obtained in this study, fermentation with L. plantarum and autoclaving is an excellent process by which to produce a new functional food from the seed of a cheap legume (Vigna sinensis L. var. carilla).


2017 ◽  
Vol 2 (4) ◽  
pp. 464-470
Author(s):  
Mulizani Mulizani ◽  
Yanti Meldasari Lubis ◽  
Normalina Arpi

Abstrak. Pemanfaatan pangan lokal sagu dapat mengurangi konsumsi terigu dalam  pembuatan mi. Tujuan penelitian ini untuk mempelajari pembuatan mi basah dari pati sagu terfermentasi dan substitusi tepung (MOCAF, tepung ubi jalar fermentasi, dan tepung kacang hijau).  Penelitian pembuatan mi basah menggunakan  Rancangan Acak Kelompok  (RAK) faktorial dengan 2 faktor. Faktor pertama, lama fermentasi pati sagu yang terdiri atas tiga taraf yaitu FI= 7 hari, F2=14 hari, dan F3= 21 hari. Faktor ke dua adalah substitusi pati dengan tepung (80%:20%), dengan  tiga  taraf yaitu S1=pati sagu fermentasi:MOCAF, S2=pati sagu fermentasi:tepung ubi jalar kuning fermentasi, dan S3=pati sagu fermentasi:tepung kacang hijau. Analisis yang dilakukan adalah  uji organoleptik secara deskriftif  yaitu kelengketan, elastisitas,warna, aroma, dan overall mi basah. Pembuatan mi basah menunjukkan bahwa perlakuan lama fermentasi pati sagu F1(7 hari) menghasilkan  nilai elastisitas mi basah yang lebih tinggi (lebih baik) (P≤0,05), dibandingkan mi basah dari pati sagu F2 (14 hari) dan F3 (21 hari), walaupun kelengketan, dan aroma asam mi basahnya rendah (kurang baik) (P≤0,05).  Produk mi basah terbaik  yaitu mi  yang  terbuat dari pati sagu yang difermentasi 7 hari (F1) dengan substitusi tepung ubi jalar fermentasi, kelengketan 2,05 (lengket), elastisitas 2,43 (tidak elastis), warna 2,30  (tidak cerah) aroma asam 2,80 (tidak asam), rasa asam 2,88 (tidak asam), overall  2,60 (baik).Effectts of  Natural Sago Starch Fermentation  Quality Sensory of  Wet Noodles Made by Substituted no wheat  Flour (Mocaf, Fermented Sweet Potato Flour, Mung Bean)Abstract. Utilization of local food sago can reduce the consumption of wheat in the manufacture of noodles. The purpose of this research was to study making wet noodles of fermented sago starch and the use of flour substitution (mocaf, fermented sweet potato flour, and mung bean flour) in the manufacture of wet noodles. A randomized block design with 2 factors was use in the manufacture of wet noodles. First factor is sago starch fermentation period consist of three levels ie FI = 7 days, F2 = 14 days, and F3 = 21 days. Second factor is the substitution of sago starch with flour (80%: 20%), there are three levels ie S1 = fermented sago starch : mocaf, S2 = fermented sago starch : fermented yellow sweet potato flour, and S3 = fermented sago starch: mung bean flour. Analysis of the sago starch and substituted flour include descriptive organoleptic tests  stickiness, elasticity, color, flavor, and overall of wet noodles. Manufacture of wet noodles showed that sago starch fermentation time F1 resulted in higher (better) (P≤0,05) breaking test and elasticity wet noodles compared to wet noodles from sago starch F2 and F3, although the adhesiveness and the sour aroma of the wet noodles were low (worse) (P≤0,05). descriptive organoleptic values of stickiness 2.05 (sticky), elasticity 2.43 (inelastic), color 2,30 (not bright), sourness aroma 2.80 ( not sour), sourness taste 2.88 (not sour), overalls 2.60 (good). 


2010 ◽  
Vol 119 (4) ◽  
pp. 1544-1549 ◽  
Author(s):  
J.A. Gallegos-Infante ◽  
N.E. Rocha-Guzman ◽  
R.F. Gonzalez-Laredo ◽  
L.A. Ochoa-Martínez ◽  
N. Corzo ◽  
...  

LWT ◽  
2018 ◽  
Vol 89 ◽  
pp. 674-680 ◽  
Author(s):  
Aurea K. Ramírez-Jiménez ◽  
Marcela Gaytán-Martínez ◽  
Eduardo Morales-Sánchez ◽  
Guadalupe Loarca-Piña

2002 ◽  
Vol 52 (2) ◽  
pp. 143-147 ◽  
Author(s):  
Tenin Dzudie ◽  
Joel Scher ◽  
Joel Hardy
Keyword(s):  

Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1087
Author(s):  
Tatiana Bojňanská ◽  
Janette Musilová ◽  
Alena Vollmannová

The influence of the addition of four legume flours, chickpea, broad bean, common bean and red lentil (in amounts of 5%, 10% and 15% to a wheat-rye composite flour (50:50:0-control flour), in ratios of 50:45:5; 50:40:10; 50:35:15) was studied by analyzing the rheological properties of dough in order to further exploit the functionality of legume flours in bakery products. The rheological properties of dough were monitored using a Mixolab 2. A Rheofermentometer F4 was used to check the dough fermentation, and a Volscan was used for evaluating the baking trials. The addition of different legume flours in the mixtures resulted in different viscoelastic properties of the dough. The results showed a weakening of the protein network depending on the amount of legume flour added and on the specific legume flour. On the contrary, all samples with a higher proportion of legume flour showed an increased resistance to starch retrogradation. All flours had the ability to produce a sufficient volume of fermenting gases, with the exception of flours with a higher addition of broad bean flour, and the baking test confirmed a lower bread volume for bread with this addition. The results of the sensory evaluation indicated that legume flour additions resulted in breads with an acceptable sensory quality, in the case of additions of 5% at the same level as the bread controls, or even better. The aromas and flavors of the added non-cereal ingredients improved the sensory profile of wheat-rye bread. Breads with additions of chickpea, common bean and broad bean had a considerable proportion of darker colors in comparison to the control bread and bread with red lentil.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 1159-1159
Author(s):  
Juste Contin Gomes Mariana ◽  
Juliana Soares da Silva ◽  
Andressa Assis ◽  
Elvira Gonzalez de Mejia ◽  
Hilário Cuquetto Mantovani ◽  
...  

Abstract Objectives To evaluate the effects of whole flour and protein hydrolysate from common bean on gut health in mice fed a High-Fat Diet. Methods BALB/c adults mice (n = 48) where divided in 4 groups (n = 12 each): normal control (NC standard diet AIN-93M); High-Fat Diet (HFD) only; HFD plus bean flour (HFBF) and HFD plus bean protein hydrolysate (HFPH; 700 mg/kg of body/day). After 9 weeks, the animals were euthanized. Cecum weight was measured and cecum content was collected. Cecum content was used to analyze moisture by gravimetric method, lipids by extraction in Soxhlet apparatus, short chain fatty acids (SCFA) by HPLC and DNA extraction and sequencing of the gut microbiota. Total genomic DNA was extracted from fecal samples and loaded using the Illumina MiSeq platform at Argonne National Laboratory. Data were analyzed by ANOVA and post-hoc of Newman-Kews. Nonparametric and independent samples were submitted to Kruskal-Wallis with a Dunn's multiple comparison test (P < 0.05). Results HFBF increased cecum weight (+69%), moisture (+104.6%) and lipids (+11.5%) in the feces compared to HFD group (P < 0.05), and the Beta diversity was different from HFD. Acetic acid concentration decreased (−37.7%) in cecal content of HFBF group compared to HFD group (P < 0.05), and propionic and butyric acids cecal concentration did not differ (P > 0.05) among experimental groups. The abundance of Bacteroidetes increased and the Firmicutes/Bacteroidetes ratio decreased in the HFBF compared to control groups. The operational taxonomic units (OTUs) enriched by HFBF were mainly assigned to Muribaculaceae family, which show high potential to improve gut health. The functional analysis of the microbiota shown beneficial changes in the host's genetic capacity, especially in the metabolic pathways involved with glucose metabolism. KEGG metabolic pathways involved with starch and sucrose metabolism, as well as the galactose metabolism were enriched in the HFBF group compared to the HFD group (P < 0.05). Conclusions The intake of common bean flour modulates the microbiota composition and abundance of SCFA-producing bacteria, and attenuates the effects of HFD, showing potential to improve gut microbiota composition and function of mice. Funding Sources CNPq, CAPES, Fapemig and Fulbright (Brazil).


2010 ◽  
Vol 16 (5) ◽  
pp. 427-434 ◽  
Author(s):  
M. Reyes-Bastidas ◽  
E.Z. Reyes-Fernández ◽  
J. López-Cervantes ◽  
J. Milán-Carrillo ◽  
G.F. Loarca-Piña ◽  
...  

The effects of solid state fermentation (SSF) on physicochemical, nutritional and antioxidant properties of common bean flour were studied. SSF increased protein content (21.7%) and decreased lipids (-38.4%), carbohydrates (-3.5%) and phytic acid (-58.3%). Fermented (tempeh) flour showed higher dispersability, lower water solubility index and pH than unfermented flour. Fermentation also increased an average of 0.21 g/100 g protein, six of the essential amino acids (EAAs), including total sulfur (Met + Cys), the limiting EAAs in unfermented flour (score = 0.91); Lys and Trp decreased 0.21 and 0.09 g/100 g protein, respectively. SSF improved the in vitro protein digestibility and the calculated protein efficiency ratio. Tempeh flour had 2.2-fold more phenolics than the bean flour and exhibited antiradical activity (43%) and antioxidant activity (38%) correlated with total phenolics content. Common bean tempeh flour may be considered for the fortification of widely consumed legume-based food products and also for the prevention of pathologies associated with oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document