scholarly journals Repressors of anthocyanin biosynthesis

2021 ◽  
Author(s):  
Amy M. LaFountain ◽  
Yao‐Wu Yuan
Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1477
Author(s):  
Asadullah Khan ◽  
Sanaullah Jalil ◽  
Huan Cao ◽  
Yohannes Tsago ◽  
Mustapha Sunusi ◽  
...  

The anthocyanin biosynthesis attracts strong interest due to the potential antioxidant value and as an important morphological marker. However, the underlying mechanism of anthocyanin accumulation in plant tissues is not clearly understood. Here, a rice mutant with a purple color in the leaf blade, named pl6, was developed from wild type (WT), Zhenong 41, with gamma ray treatment. By map-based cloning, the OsPL6 gene was located on the short arm of chromosome 6. The multiple mutations, such as single nucleotide polymorphism (SNP) at −702, −598, −450, an insertion at −119 in the promoter, three SNPs and one 6-bp deletion in the 5′-UTR region, were identified, which could upregulate the expression of OsPL6 to accumulate anthocyanin. Subsequently, the transcript level of structural genes in the anthocyanin biosynthesis pathway, including OsCHS, OsPAL, OsF3H and OsF3′H, was elevated significantly. Histological analysis revealed that the light attenuation feature of anthocyanin has degraded the grana and stroma thylakoids, which resulted in poor photosynthetic efficiency of purple leaves. Despite this, the photoabatement and antioxidative activity of anthocyanin have better equipped the pl6 mutant to minimize the oxidative damage. Moreover, the contents of abscisic acid (ABA) and cytokanin (CK) were elevated along with anthocyanin accumulation in the pl6 mutant. In conclusion, our results demonstrate that activation of OsPL6 could be responsible for the purple coloration in leaves by accumulating excessive anthocyanin and further reveal that anthocyanin acts as a strong antioxidant to scavenge reactive oxygen species (ROS) and thus play an important role in tissue maintenance.


2021 ◽  
Vol 22 (4) ◽  
pp. 1622
Author(s):  
Yanyan Wang ◽  
Zefeng Zhai ◽  
Yueting Sun ◽  
Chen Feng ◽  
Xiang Peng ◽  
...  

B-BOX proteins are zinc finger transcription factors that play important roles in plant growth, development, and abiotic stress responses. In this study, we identified 15 PavBBX genes in the genome database of sweet cherry. We systematically analyzed the gene structures, clustering characteristics, and expression patterns of these genes during fruit development and in response to light and various hormones. The PavBBX genes were divided into five subgroups. The promoter regions of the PavBBX genes contain cis-acting elements related to plant development, hormones, and stress. qRT-PCR revealed five upregulated and eight downregulated PavBBX genes during fruit development. In addition, PavBBX6, PavBBX9, and PavBBX11 were upregulated in response to light induction. We also found that ABA, BR, and GA3 contents significantly increased in response to light induction. Furthermore, the expression of several PavBBX genes was highly correlated with the expression of anthocyanin biosynthesis genes, light-responsive genes, and genes that function in multiple hormone signaling pathways. Some PavBBX genes were strongly induced by ABA, GA, and BR treatment. Notably, PavBBX6 and PavBBX9 responded to all three hormones. Taken together, BBX proteins likely play major roles in regulating anthocyanin biosynthesis in sweet cherry fruit by integrating light, ABA, GA, and BR signaling pathways.


2021 ◽  
Author(s):  
Csanad Gurdon ◽  
Alexander Kozik ◽  
Rong Tao ◽  
Alexander Poulev ◽  
Isabel Armas ◽  
...  

Abstract Dietary flavonoids play an important role in human nutrition and health. Flavonoid biosynthesis genes have recently been identified in lettuce (Lactuca sativa); however, few mutants have been characterized. We now report the causative mutations in Green Super Lettuce (GSL), a natural light green mutant derived from red cultivar NAR; and GSL-Dark Green (GSL-DG), an olive-green natural derivative of GSL. GSL harbors CACTA 1 (LsC1), a 3.9-kb active nonautonomous CACTA superfamily transposon inserted in the 5′ untranslated region of anthocyanidin synthase (ANS), a gene coding for a key enzyme in anthocyanin biosynthesis. Both terminal inverted repeats (TIRs) of this transposon were intact, enabling somatic excision of the mobile element, which led to the restoration of ANS expression and the accumulation of red anthocyanins in sectors on otherwise green leaves. GSL-DG harbors CACTA 2 (LsC2), a 1.1-kb truncated copy of LsC1 that lacks one of the TIRs, rendering the transposon inactive. RNA-sequencing and reverse transcription quantitative PCR of NAR, GSL, and GSL-DG indicated the relative expression level of ANS was strongly influenced by the transposon insertions. Analysis of flavonoid content indicated leaf cyanidin levels correlated positively with ANS expression. Bioinformatic analysis of the cv Salinas lettuce reference genome led to the discovery and characterization of an LsC1 transposon family with a putative transposon copy number greater than 1,700. Homologs of tnpA and tnpD, the genes encoding two proteins necessary for activation of transposition of CACTA elements, were also identified in the lettuce genome.


1983 ◽  
Vol 38 (9-10) ◽  
pp. 711-718 ◽  
Author(s):  
U. Margna ◽  
T. Vainjärv

A short treatment of excised buckwheat cotyledons with a solution of kinetin lead to an up to 9-fold stimulation of anthocyanin biosynthesis, to an about 50 percent increase in the accumula­tion of rutin, and to an about 30 percent increase, on the average, in the accumulation of C-glycosylflavones in the treated material during its posttreatment incubation in the dark. When the treated cotyledons were incubated in a solution of ʟ--phenylalanine anthocyanin accumulation in the dark practically attained the same high level as it was observed in the illuminated cotyledons fed with exogenous ʟ--phenylalanine. In experiments with l4C-labelled L-phenylalanine kinetin induced a sharp rise in the labelling (resp. in the utilization of exogenous substrate for biosynthesis) of anthocyanins and rutin in the dark and a slight increase in the radioactivity of C-glycosylflavones. Similar labelling changes occurred in the illuminated cotyledons. However, both kinetin and light still more effectively promoted biosynthetic use of the endogenous sub­strate. As a result the relative portion of flavonoids formed from exogenous L-phenylalanine under these conditions showed a decrease as compared with the ratio of precursor use in the un­treated cotyledons. The results show that low accumulation rates of anthocyanins and other flavo­noids in the dark are conditioned by the limited access of substrate (ʟ--phenylalanine) molecules to the flavonoid enzymes lending further support to the idea that flavonoid biosynthesis is normally controlled at the substrate rather than at the enzymic level.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guanghui An ◽  
Jiongjiong Chen

Abstract Background Mustard (Brassica juncea) is an important economic vegetable, and some cultivars have purple leaves and accumulate more anthocyanins than the green. The genetic and evolution of purple trait in mustard has not been well studied. Result In this study, free-hand sections and metabolomics showed that the purple leaves of mustard accumulated more anthocyanins than green ones. The gene controlling purple leaves in mustard, Mustard Purple Leaves (MPL), was genetically mapped and a MYB113-like homolog was identified as the candidate gene. We identified three alleles of the MYB113-like gene, BjMYB113a from a purple cultivar, BjMYB113b and BjMYB113c from green cultivars. A total of 45 single nucleotide polymorphisms (SNPs) and 8 InDels were found between the promoter sequences of the purple allele BjMYB113a and the green allele BjMYB113b. On the other hand, the only sequence variation between the purple allele BjMYB113a and the green allele BjMYB113c is an insertion of 1,033-bp fragment in the 3’region of BjMYB113c. Transgenic assay and promoter activity studies showed that the polymorphism in the promoter region was responsible for the up-regulation of the purple allele BjMYB113a and high accumulation of anthocyanin in the purple cultivar. The up-regulation of BjMYB113a increased the expression of genes in the anthocyanin biosynthesis pathway including BjCHS, BjF3H, BjF3’H, BjDFR, BjANS and BjUGFT, and consequently led to high accumulation of anthocyanin. However, the up-regulation of BjMYB113 was compromised by the insertion of 1,033-bp in 3’region of the allele BjMYB113c. Conclusions Our results contribute to a better understanding of the genetics and evolution of the BjMYB113 gene controlling purple leaves and provide useful information for further breeding programs of mustard.


Sign in / Sign up

Export Citation Format

Share Document