scholarly journals Subcellular dynamics studies of iron reveal how tissue‐specific distribution patterns are established in developing wheat grains

2021 ◽  
Author(s):  
Sadia Sheraz ◽  
Yongfang Wan ◽  
Eudri Venter ◽  
Shailender K Verma ◽  
Qing Xiong ◽  
...  
2021 ◽  
Author(s):  
Dandan Zhao ◽  
Tadiyose Girma Bekele ◽  
Hongxia Zhao

Abstract Benzotriazole ultraviolet stabilizers (BUVSs) have received increasing attention due to their widespread usage, ubiquitous detection and their adverse ecological effect. However, information about the bioaccumulation potential of BUVSs and their joint exposure with heavy metals remains scarce. In this study, we investigated the bioaccumulation kinetics of 6 frequently reported BUVSs in common carp under different Cu concentration for 48 d, and their tissue-specific distribution patterns (liver, kidney, gill, and muscle tissues) were also evaluated. The bioconcentration factors (BCFs) and half-lives (t1/2) in the tissues ranged from 5.73 (UV-PS) to 1076 (UV-327), and 2.19 (UV-PS) to 31.5 (UV-320) days, respectively. The tissue-specific concentration and BCF values followed the order of liver > kidney > gill > muscle with or without Cu exposure. An increase in BCF with rising Cu concentration was observed, which is caused by the decreased depuration rate (k2) in more than half of treatment groups. These results indicated that BUVSs accumulated in fish and provides important insight into the risk assessment of this group of chemicals.


2007 ◽  
Vol 28 (3) ◽  
pp. 294-300 ◽  
Author(s):  
Andreas Werner ◽  
Gabriele Schmutzler ◽  
Mark Carlile ◽  
Colin G. Miles ◽  
Heiko Peters

The majority of mouse genes are estimated to undergo bidirectional transcription; however, their tissue-specific distribution patterns and physiological significance are largely unknown. This is in part due to the lack of methodology to routinely assess the expression of natural antisense transcripts (NATs) on a large scale. Here we tested whether commercial DNA arrays can be used to monitor antisense transcription in mouse kidney and brain. We took advantage of the reversely annotated oligonucleotides on the U74 mouse genome array from Affymetrix that hybridize to NATs overlapping with the sense transcript in the area of the probe set. In RNA samples from mouse kidney and brain, 11.9% and 10.1%, respectively, of 5,652 potential NATs returned positive and about half of the antisense RNAs were detected in both tissues, which was similar to the fraction of sense transcripts expressed in both tissues. Notably, we found that the majority of NATs are related to the sense transcriptome since corresponding sense transcripts were detected for 92.5% (kidney) and 74.5% (brain) of the detected antisense RNAs. Antisense RNA transcription was confirmed by real-time PCR and included additional RNA samples from heart, thymus, and liver. The randomly selected transcripts showed tissue specific expression patterns and varying sense/antisense ratios. The results indicate that antisense transcriptomes are tissue specific, and although pairing of sense/antisense transcripts are known to result in rapid degradation, our data provide proof of principle that the sensitivity of commercial DNA arrays is sufficient to assess NATs in total RNA of whole organs.


2021 ◽  
Author(s):  
Sadia Sheraz ◽  
Yongfang Wan ◽  
Eudri Venter ◽  
Shailender K Verma ◽  
Qing Xiong ◽  
...  

AbstractUnderstanding iron trafficking in plants is key to enhancing the nutritional quality of crops. Due to the difficulty of imaging iron in transit, little is known about iron translocation and distribution in developing seeds. A novel approach, combining 57Fe isotope labelling and NanoSIMS, was used to visualize iron translocation dynamics at the subcellular level in wheat grain, Triticum aestivum L. We were able to track the main route of iron from maternal tissues to the embryo through different cell types. Further evidence for this route was provided by genetically diverting iron into storage vacuoles, as confirmed by histological staining and TEM-EDS. Virtually all iron was found in intracellular bodies, indicating symplastic rather than apoplastic transport. Aleurone cells contained a new type of iron body, highly enriched in 57Fe, and most likely represents iron-nicotianamine being delivered to phytate globoids. Correlation with tissue-specific gene expression provides an updated model of iron homeostasis in cereal grains with relevance for future biofortification efforts.


1996 ◽  
Vol 75 (1) ◽  
pp. 121-127 ◽  
Author(s):  
H. H. W. Thijssen ◽  
M. J. Drittij-Reijnders-

We measured the vitamin K status in postmortem human tissues (brain, heart, kidney, liver, lung, pancreas) to see if there is a tissue-specific distribution pattern. Phylloquinone (K1,) was recovered in all tissues with relatively high levels in liver, heart and pancreas (medians, 10·6 (4·8), 9·3 (4·2), 28·4 (12·8) pmol(ng)/g wet weight tissue); low levels (< 2 pmol/g) were found in brain, kidney and lung. Menaquinone-4 (MK-4) was recovered from most of the tissues; its levels exceeded the K1levels in brain and kidney (median, 2·8 ng/g) and equalled K1in pancreas. Liver, heart and lung were low in MK–4. The higher menaquinones, MK-6–11, were recovered in the liver samples (n6), traces of MK-6–9 were found in some of the heart and pancreas samples. The results show that in man there are tissue-specific, vitamin-K distribution patterns comparable to those in the rat. Furthermore, the accumulation of vitamin K in heart, brain and pancreas suggests a hitherto unrecognized physiological function of this vitamin.


1992 ◽  
Vol 282 (2) ◽  
pp. 339-344 ◽  
Author(s):  
C B Srikant ◽  
K K Murthy ◽  
Y C Patel

Pharmacological studies have suggested that the somatostatin (SS) receptor is heterogeneous and exhibits SS-14-and SS-28-selective subtypes. Whether such subtypes arise from molecular heterogeneity of the receptor protein has not been definitively established. Previous reports characterizing the molecular properties of the SS receptor by the cross-linking approach have yielded divergent size estimates ranging from 27 kDa to 200 kDa. In order to resolve this discrepancy, as well as to determine whether SS-14 and SS-28 interact with specific receptor proteins, we have cross-linked radioiodinated derivatives of [125I-Tyr11]SS-14 (T*-SS-14) and [Leu8,D-Trp22,125I-Tyr25]SS-28 (LTT*-SS-28) to membrane SS receptors in rat brain, pituitary, exocrine pancreas and adrenal cortex using a number of chemical and photoaffinity cross-linking agents. The labelled cross-linked receptor proteins were analysed by SDS/PAGE under reducing conditions followed by autoradiography. Our findings indicate that the pattern of specifically labelled cross-linked SS receptor proteins is sensitive to the concentration of chemical cross-linking agents such as disuccinimidyl suberate and dithiobis-(succinimidyl propionate). Labelled high-molecular-mass complexes of cross-linked receptor-ligand proteins were observed only when high concentrations of these cross-linkers were employed. Using optimized low concentrations of cross-linkers, however, two major labelled bands of 58 +/- 3 kDa and 27 +/- 2 kDa were detected. These two bands were identified as specifically labelled SS receptor proteins subsequent to cross-linking with a number of photoaffinity cross-linking agents as well. We demonstrate here that the 58 kDa protein is the major SS receptor protein in the rat pituitary, adrenal and exocrine pancreas, whereas the 27 kDa moiety represents the principal form in the brain. Additionally, the presence of a minor specifically labelled band of 32 kDa was detected uniquely in the brain, and a minor labelled protein of 42 kDa was observed in the pancreas. The labelling pattern obtained with LTT*-SS-28 was identical to that observed with T*-SS-14. Labelling of the 27 kDa band by either ligand was inhibited by SS-14 and SS-28 in a dose-dependent manner. Densitometric quantification showed that SS-14 exhibited greater than 2-fold greater potency than SS-28 for inhibiting the labelling of the 27 kDa species. These findings emphasize the need for careful interpretation of cross-linking data obtained for SS receptors, and provide evidence for molecular heterogeneity and for a tissue-specific distribution of the two principal SS receptor proteins.


2005 ◽  
Vol 24 (3) ◽  
pp. 597 ◽  
Author(s):  
Johan Maervoet ◽  
Veerle Beck ◽  
Simon A. Roelens ◽  
Adrian Covaci ◽  
Stefan Voorspoels ◽  
...  

Author(s):  
Peeter Päll

The article looks at the geographical distribution of toponymic endings with the aim of discovering significant patterns. The corpus includes ca. 9,000 oikonyms, of which 24% are those that have the analysed endings. Endings are recognized if names have at least 3 syllables or have 2 syllables and the Q3 degree of quantity; in these cases the existence of a toponymic suffix is most likely. In the case of endings that have multiple origins there are seemingly no specific distribution patterns, with the exception of some borrowed endings (e.g. -na or -va). In the case of typical toponymic suffixes -la, -ste and -vere each of these are often concentrated into certain areas based on which the whole are of Estonia might be divided into regions: -vere-region (northern Tartumaa and northern Viljandimaa), -ste-region (Võrumaa, southern Tartumaa, southern Viljandimaa and southern Pärnumaa), -la-region (Virumaa, Järvamaa, Harjumaa) and a mixed region (Läänemaa, northern Pärnumaa). The island of Saaremaa is dominated by -la-endings, Hiiumaa is either a mixed region or a -ste-region


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sushant Patkar ◽  
Kerstin Heselmeyer-Haddad ◽  
Noam Auslander ◽  
Daniela Hirsch ◽  
Jordi Camps ◽  
...  

Abstract Background Many carcinomas have recurrent chromosomal aneuploidies specific to the tissue of tumor origin. The reason for this specificity is not completely understood. Methods In this study, we looked at the frequency of chromosomal arm gains and losses in different cancer types from the The Cancer Genome Atlas (TCGA) and compared them to the mean gene expression of each chromosome arm in corresponding normal tissues of origin from the Genotype-Tissue Expression (GTEx) database, in addition to the distribution of tissue-specific oncogenes and tumor suppressors on different chromosome arms. Results This analysis revealed a complex picture of factors driving tumor karyotype evolution in which some recurrent chromosomal copy number reflect the chromosome arm-wide gene expression levels of the their normal tissue of tumor origin. Conclusions We conclude that the cancer type-specific distribution of chromosomal arm gains and losses is potentially “hardwiring” gene expression levels characteristic of the normal tissue of tumor origin, in addition to broadly modulating the expression of tissue-specific tumor driver genes.


Sign in / Sign up

Export Citation Format

Share Document