scholarly journals Seed storage: maintaining seed viability and vigor for restoration use

2020 ◽  
Vol 28 (S3) ◽  
Author(s):  
Marcello De Vitis ◽  
Fiona R. Hay ◽  
John B. Dickie ◽  
Clare Trivedi ◽  
Jaeyong Choi ◽  
...  
Keyword(s):  
2022 ◽  
Vol 354 (11-12) ◽  
pp. 97-99
Author(s):  
M. A. Starostina ◽  
N. G. Lapenko

Relevance. Biological features (morphometric indicators, viability and germinating power) of Poterium polygamum seeds found in natural communites of the Stavropol Territory have been studied. The conservation of wild-growing plant species in the natural population and the rational use of their potential are relevant.Methods. Years of study — 2013–2021. The subject of the study is Poterium polygamum seeds. Seeds were collected in 2013. Studies were carried out according to the methods of studying seed material. Freshly harvested seeds and seeds of different shelf life were germinated in petri dishes at a temperature of 18–20 °C.Results. The collected seeds of Poterium polygamum are quite large. The length of the seeds is 4–5 mm, the width is about 2.5 mm. The mass of 1000 pieces of seeds on average was 10.59 grams. Complete absence of viability of freshly harvested Poterium polygamum seeds was revealed. After three months, seed viability was 97%. This is a shallow physiological rest associated with the post-harvest maturation period. During the storage of seeds, their high germination was established — from 70 to 100%. The duration of seed storage is 8 years. The largest number of germinated seeds and their germinating power were noted in the third year of their storage (100%). Seeds germinated on the third or fourth day. The differences between the viability of seeds and their germinating power are not great. In the eighth year of storage of Poterium polygamum seeds, viability and germinating power were slightly reduced. The storage period of seeds, in which they retain the ability to germinate and the germinating power, is long. It has been found that the wild species Poterium polygamum belongs to plants with a high (70 to 100%) viability. This species is regularly resumed in the natural population. The revealed biological features of Poterium polygamum seeds can become the scientific basis during the reconstruction of degraded natural grass stand and in selection work.


2021 ◽  
Vol 8 (1) ◽  
pp. 79-88
Author(s):  
Md. Nasir Uddin ◽  
S. M. Mahbub Ali ◽  
Md. Abu Sadat ◽  
Md Amazed Hossain Chowdhury ◽  
Israt Jahan Mumu ◽  
...  

Seed plays an important role in agricultural sector for both production and consumption purpose. Availability of vigour seed is one of the major constraints for maximizing crop production. However, healthy seed can also lose its viability during seed storage by changing different physio-chemical properties. Influence of environmental factors and seed containers during storage leading to seed deterioration. In this research, mid storage seed hardening treatment was applied in different aged seeds of jute species (C. Capsularis & C. olitorius) with two types of storage bags. Seed hardening treatment showed the less moisture content with better germination percentage compared to the untreated species of jute seeds. Seed packing in polythene bags during both short and long term seed storages had higher viable seeds compared to the cloth packing seeds. The effect of seed hardening treatment on seed oil content and pattern of oil degradation is distinct in early period of storage. The faster rate of oil degradation, soluble protein and free amino acids was found in seeds of un-treated stored seeds in cloth bag. Contrary, very slow rate of oil degradation was observed in harden seed and stored in polythene bag which indicated better storability of harden seeds.


2016 ◽  
Vol 23 (2) ◽  
pp. 73-78
Author(s):  
T. Sabu ◽  
P.S. Shameer ◽  
Chitra Rajeswary ◽  
N. Mohanan ◽  
C. Anilkumar

Seeds of Garcinia talbotii remained viable hardly for two weeks in open room conditions. As part of ex-situ conservation of Garcinia talbotii, seeds longevity was studied since seeds are the main propagule. For this, the relationship of seed viability with respect to different moisture content and storage temperature were analyzed. Seed storage behaviour is also investigated. Being recalcitrant, seeds are desiccation sensitive as well as chilling sensitive. During hermetic storage of seeds at 300C /70 % RH seeds retained viability about 6 months.


2021 ◽  
Vol 42 ◽  
pp. e69341
Author(s):  
Miguel Ángel González Pérez ◽  
Nereida Cabrera-García ◽  
Isabel Cayon-Fernández

Conservation seed banks are essential for ex-situ conservation of genetic biodiversity. These institutions are especially relevant for threatened species and play a vital role in their conservation by preserving genetic material. However, samples deposited in the seed banks must germinate when necessary to use them (i.e., recovery plans, etc.). This study uses four accessions of the endemic endangered species from Gran Canaria Island (Canary Islands), Isoplexis isabelliana (Webb & Berthel.) Masf. (Scrophulariaceae). Germination tests were carried out to measure seed viability through time and the possible impact of seed storage on their viability. These accessions have been kept in the seed bank for four months to thirty years under different storage conditions. Germination results differed for seeds after 45 days of exposition using 16 hours light and 8 hours darkness at 17 °C. Accessions kept in the seed bank, independently of storage, showed a high germination percentage (89%). Whereas the accessions with rough storage conditions showed a 0% germination rate. The results highlighted the good state of conservation of the material deposited in the Seed Bank of the Botanical Garden "Viera y Clavijo" and the reliability of the temperature and humidity conditions in which the seeds of I. isabelliana have been stored. We consider these results as momentous since several natural populations of I. isabelliana has been affected by the last forest fire on the island.


2016 ◽  
Vol 39 (4) ◽  
pp. 985-995 ◽  
Author(s):  
Kariane Rodrigues Sousa ◽  
Victor Paulo Mesquita Aragão ◽  
Ricardo Souza Reis ◽  
Amanda Ferreira Macedo ◽  
Henrique Duarte Vieira ◽  
...  

2010 ◽  
Vol 50 (1) ◽  
pp. 67-71
Author(s):  
Adetumbi Adedayo ◽  
Olakojo Adelowo

Storage Potentials and Tolerance of High Protein Maize (HPM) and Quality Protein Maize (QPM) to Seed Storage Pests in Controlled EnvironmentStudies on seed storage were conducted at seed processing and storage section of the Institute of Agricultural Research and Training, Obafemi Awolowo University, Moor Plantation, Ibadan Nigeria in 2007 and 2008, to evaluate High protein maize (HPM) seed for resistance/tolerance to storage insect pest, and assess the resultant effect of seed treatment chemicals on its germination potential. Seeds of HPM variety (ART-98-SW1) and Quality protein maize (QPM) variety (ILE-1-OB) and two varieties of field corn (SUWAN-1-SR and TZPB-SRW) were treated with chemicals, namely Fitscophos™, Actellic 25 EC™, Apron Star™ and combination of Actellic 25 EC and Fitscophos before storing them under controlled environment for six months. The results show that HPM, QPM and field corn require storage chemicals for effective storage, but both QPM and HPM varieties were significantly damaged by storage insect pests compared to field corn varieties regardless of the chemical used. Apron Star effectively reduced infestation by insect pests, but it may bring about significant reduction in seed viability if used for long term storage. Combination of Actellic 25 EC and Fitscophos successfully reduced infestation by insect pests without significant injurious effect on seed viability. Breeding programmes for resistance to storage pests is recommended while long term effects of Apron Star on seed viability needs to be investigated before recommending it for use in HPM/QPM maize varieties.


2021 ◽  
Vol 182 (1) ◽  
pp. 157-167
Author(s):  
M. A. Nikolaeva ◽  
E. Yu. Varentsova ◽  
G. F. Safina

Relevance of the study. One of the ways to maintain the genetic diversity of forest-forming species is to preserve highquality seed material ex situ. However, the relationship between the diversity of pathogenic mycobiota and the duration and methods of forest tree seed storage remains underexplored. The results of research into this problem can be used in forest seed production and forest phytopathology.Materials and methods. For our study we used seeds ofРinus sylvestris L. and Picea abies (L.) Karst. of the orthodox type, harvested in the period of 1996–2011 and stored under different temperatures: +20°С, +4°С, –18°С, and in liquid nitrogen vapor (–182°С) since 2011. Prior to their storage, seed samples were dried to a moisture content of 4.2–4.4% and hermetically packed. Seed germination was tested before and after three, five and eight years of storage, following GOST 13056.6-97 standards. The level of seed infection and the composition of pathogenic fungi were assessed.Results. After eight years of storage at +20°С, pine and spruce seed germination capacity decreased by 13–60%, depending on the year of harvesting. Seed storage at –18°С and –182°С allowed us to prevent seed infection and preserve seed viability. In most cases, the germination energy and germination capacity were negatively correlated with the level of seed infection. The diversity of pathogenic (mold) fungi on the surface of seeds was represented by ten genera; the most common were saprotrophs: Aspergillus P. Micheli, Penicillium Link, Rhizopus Ehrenb., Scopulariopsis Bainier.Conclusion. At the present stage of research, the success of seed storage at low and ultralow temperatures was demonstrated. We recommend cryopreservation for the long-term storage of improved and valuable seeds.


HortScience ◽  
2007 ◽  
Vol 42 (6) ◽  
pp. 1436-1439 ◽  
Author(s):  
H.J. Hill ◽  
Jesse D. Cunningham ◽  
Kent J. Bradford ◽  
A.G. Taylor

The Ellis-Roberts seed viability equation is used to predict seed survival after storage at specified temperatures and moisture contents. Seed priming, which can break dormancy and accelerate germination, can also reduce seed storage life. Because primed seeds were not used in developing the Ellis-Roberts equation, the reciprocal nature of specific seed moisture content (MC, fresh weight basis) and temperatures that applies to nonprimed lettuce (Lactuca sativa L.) seeds may not apply to primed seeds. To determine how priming affects lettuce seeds in relation to the viability equation, an experiment was conducted using two cultivars, ‘Big Ben’ and ‘Parris Island Cos’. Seeds primed in polyethylene glycol 8000 (–1.45 MPa, 24 h at 15 °C) and nonprimed seeds were first adjusted to 6% and 9% moisture contents and then stored at 48 and 38 °C for up to 30 days, respectively. These storage conditions (6% MC and 48 °C; 9% MC and 38 °C) were predicted by the viability equation to result in equal longevities. Subsequent viability assays at 20 °C revealed that nonprimed seeds in both storage environments exhibited similar losses in viability over time, thus validating the Ellis-Roberts equation and the use of these conditions to apply different but equal aging stress. Primed seeds of both cultivars deteriorated faster than nonprimed seeds as expected. However, primed seeds did exhibit different rates of deterioration between the storage environments. Primed seeds stored at 9% MC and 38 °C deteriorated faster than primed seeds stored at 6% MC and 48 °C. The rate of decline in probit viability percentage was three times greater in primed ‘Big Ben’ seeds stored at 9% MC and 38 °C than for those stored at 6% MC and 48 °C (–1.34 versus –0.26 probits per day, respectively). ‘Parris Island Cos’ seeds stored at 9% MC and 38 °C had twice the rate of deterioration that those stored at 6% MC and 48 °C (–1.19 and –0.49 probits per day, respectively). The results indicate that primed lettuce seeds were more sensitive to the adverse effects of higher seed MC than were nonprimed seeds during storage at elevated temperatures.


2011 ◽  
Vol 33 (3) ◽  
pp. 549-560
Author(s):  
Renata Conduru Ribeiro Reis ◽  
Bárbara França Dantas ◽  
Renato Delmondez de Castro ◽  
Cimille Gabrielle Cardoso Antunes ◽  
Fabrício Francisco Santos da Silva ◽  
...  

Gliricidia sepium is a drought-tolerant species, easily multiplied by seeds, and has been exploited by farmers as a source of forage in the semi-arid region of northeast Brazil. The objective of the present study was to evaluate the effect of seed storage on the mobilization of reserves during imbibition of "Gliricidia" seeds. Freshly-harvested seeds were packed in kraft paper bags and stored for three and six months in the laboratory under ambient conditions (25 º C ± 3 T and 75% ± 3 RH). Cotyledons were isolated from imbibed seeds and macerated for the extraction and quantification of total soluble sugars, reducing sugars, sucrose and starch, as well as of proteins, amino acids and for amylase activity. Storage under these conditions resulted in an increase in seed water content although germination remained at relatively high levels (86%). Seed macromolecule levels showed significant variation with the storage period and imbibition and these variations were associated with a loss in seed viability due to inadequate storage conditions.


Sign in / Sign up

Export Citation Format

Share Document