Arabidopsis RING‐type E3 ubiquitin ligase XBAT35.2 promotes proteasome‐dependent degradation of ACD11 to attenuate abiotic stress tolerance

2020 ◽  
Vol 104 (6) ◽  
pp. 1712-1723
Author(s):  
Qiaomu Li ◽  
Renata J. Serio ◽  
Andrew Schofield ◽  
Hongxia Liu ◽  
Sheena R. Rasmussen ◽  
...  
2021 ◽  
Vol 22 (5) ◽  
pp. 2487
Author(s):  
Juyoung Choi ◽  
Wonkyung Lee ◽  
Gynheung An ◽  
Seong-Ryong Kim

Ubiquitination is an important environmental stress response, and E3 ubiquitin ligases play a major role in the process. T-DNA insertion mutants of rice, Oscbe1-1, and Oscbe1-2, were identified through the screening of cold stress tolerance at seedling stage. Oscbe1 mutants showed a significantly higher cold stress tolerance in the fresh weight, chlorophyll content, and photosynthetic efficiency than wild type. Molecular prediction showed that OsCBE1 (Oryza sativa Cullin4-Based E3 ubiquitin ligase1) encoded a novel substrate receptor of Cullin4-based E3 ubiquitin ligase complex (C4E3). Whereas Oscbe1 mutants had fewer panicles and grains than wild type in the paddy field, the overexpression lines of OsCBE1 had more panicles and grains, suggesting that OsCBE1 is involved in the regulation of both abiotic stress response and development. Oscbe1 mutants also showed ABA hypersensitivity during seed germination, suggesting OsCBE1 function for the stress response via ABA signaling. In silico analysis of OsCBE1 activity predicted a CCCH-type transcription factor, OsC3H32, as a putative substrate. Co-IP (Co-immunoprecipitation) study showed that OsCBE1 interacts with OsDDB1, an expected binding component of OsCBE1 and OsC3H32. Additionally, expression of OsOLE16, OsOLE18, and OsBURP5 were negatively related with expression of OsCBE1. These results suggest that OsCBE1 functions as a regulator of the abiotic stress response via CCCH as a member of the C4E3.


2018 ◽  
Vol 34 (2) ◽  
pp. 259-265 ◽  
Author(s):  
Hemant B Kardile ◽  
◽  
Vikrant ◽  
Nirmal Kant Sharma ◽  
Ankita Sharma ◽  
...  

Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Antt Htet Wai ◽  
Muhammad Waseem ◽  
A B M Mahbub Morshed Khan ◽  
Ujjal Kumar Nath ◽  
Do Jin Lee ◽  
...  

Protein disulfide isomerases (PDI) and PDI-like proteins catalyze the formation and isomerization of protein disulfide bonds in the endoplasmic reticulum and prevent the buildup of misfolded proteins under abiotic stress conditions. In the present study, we conducted the first comprehensive genome-wide exploration of the PDI gene family in tomato (Solanum lycopersicum L.). We identified 19 tomato PDI genes that were unevenly distributed on 8 of the 12 tomato chromosomes, with segmental duplications detected for 3 paralogous gene pairs. Expression profiling of the PDI genes revealed that most of them were differentially expressed across different organs and developmental stages of the fruit. Furthermore, most of the PDI genes were highly induced by heat, salt, and abscisic acid (ABA) treatments, while relatively few of the genes were induced by cold and nutrient and water deficit (NWD) stresses. The predominant expression of SlPDI1-1, SlPDI1-3, SlPDI1-4, SlPDI2-1, SlPDI4-1, and SlPDI5-1 in response to abiotic stress and ABA treatment suggested they play regulatory roles in abiotic stress tolerance in tomato in an ABA-dependent manner. Our results provide new insight into the structure and function of PDI genes and will be helpful for the selection of candidate genes involved in fruit development and abiotic stress tolerance in tomato.


2021 ◽  
Vol 22 (13) ◽  
pp. 7235
Author(s):  
Md. Tahjib-Ul-Arif ◽  
Mst. Ishrat Zahan ◽  
Md. Masudul Karim ◽  
Shahin Imran ◽  
Charles T. Hunter ◽  
...  

Several recent studies have shown that citric acid/citrate (CA) can confer abiotic stress tolerance to plants. Exogenous CA application leads to improved growth and yield in crop plants under various abiotic stress conditions. Improved physiological outcomes are associated with higher photosynthetic rates, reduced reactive oxygen species, and better osmoregulation. Application of CA also induces antioxidant defense systems, promotes increased chlorophyll content, and affects secondary metabolism to limit plant growth restrictions under stress. In particular, CA has a major impact on relieving heavy metal stress by promoting precipitation, chelation, and sequestration of metal ions. This review summarizes the mechanisms that mediate CA-regulated changes in plants, primarily CA’s involvement in the control of physiological and molecular processes in plants under abiotic stress conditions. We also review genetic engineering strategies for CA-mediated abiotic stress tolerance. Finally, we propose a model to explain how CA’s position in complex metabolic networks involving the biosynthesis of phytohormones, amino acids, signaling molecules, and other secondary metabolites could explain some of its abiotic stress-ameliorating properties. This review summarizes our current understanding of CA-mediated abiotic stress tolerance and highlights areas where additional research is needed.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 173
Author(s):  
Abeer F. Desouky ◽  
Ahmed H. Ahmed ◽  
Hartmut Stützel ◽  
Hans-Jörg Jacobsen ◽  
Yi-Chen Pao ◽  
...  

Pathogenesis-related (PR) proteins are known to play relevant roles in plant defense against biotic and abiotic stresses. In the present study, we characterize the response of transgenic faba bean (Vicia faba L.) plants encoding a PR10a gene from potato (Solanum tuberosum L.) to salinity and drought. The transgene was under the mannopine synthetase (pMAS) promoter. PR10a-overexpressing faba bean plants showed better growth than the wild-type plants after 14 days of drought stress and 30 days of salt stress under hydroponic growth conditions. After removing the stress, the PR10a-plants returned to a normal state, while the wild-type plants could not be restored. Most importantly, there was no phenotypic difference between transgenic and non-transgenic faba bean plants under well-watered conditions. Evaluation of physiological parameters during salt stress showed lower Na+-content in the leaves of the transgenic plants, which would reduce the toxic effect. In addition, PR10a-plants were able to maintain vegetative growth and experienced fewer photosystem changes under both stresses and a lower level of osmotic stress injury under salt stress compared to wild-type plants. Taken together, our findings suggest that the PR10a gene from potato plays an important role in abiotic stress tolerance, probably by activation of stress-related physiological processes.


2021 ◽  
Vol 190 ◽  
pp. 104582
Author(s):  
Karikalan Jayaraman ◽  
Venkat Raman K. ◽  
Amitha Mithra Sevanthi ◽  
Sivakumar S.R. ◽  
Gayatri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document