scholarly journals Bluetooth Transceivers for Full Duplex Communications in Mobile Robots

2012 ◽  
Author(s):  
Choo S. H. ◽  
Shamsudin H M. Amin ◽  
N. Fisal ◽  
C. F. Yeong ◽  
J. Abu Bakar

Projek ini mengeksplotasi penggunaan Teknologi Bluetooth dalam robot mudah alih. Robot mudah alih mempunyai kebolehan untuk bergerak secara automasi menggunakan algoritma yang rumit dan canggih. Algoritma disimpan dalam sebuah komputer sebagai tuan dan juga “server”. Segala bacaan penderia daripada robot mudah alih akan dihantar kepada tuan dan diproses. Kemudian, arahan untuk langkah seterusnya akan dihantar dari “server” kepada robot mudah alih dalam mode komunikasi dua hala dan dupleks penuh. Maka, “otak” utama berada di "server" dan bukannya pada robot mudah alih. Kertas ini akan memfokus pada perantaraan muka antara Bluetooth transceiver dan Handy Board MC68HC11 mikro pengawal pada robot mudah alih. Untuk kes biasa, satu penerima dan penghantar diperlukan untuk setiap alat (server dan client) masing-masing, tetapi dengan Teknologi Bluetooth, hanya dua Bluetooth transceiver diperlukan untuk mencapai perhubungan dupleks penuh. Projek ini telah menghasilkan robot mudah alih dengan kebolehan Bluetooth. Robot tersebut boleh dikawal secara “wirelessly” melalui Bluetooth transceiver. Kata kunci: Teknologi Bluetooth; dua hala; duplex penuh; automasi; Handy Board This work explores the implementation of Bluetooth technology in mobile robots. The mobile robot has the capability to move around autonomously using complicated and powerful algorithm. The algorithms are stored in the master as the server. All sensor readings from the mobile robot will be transmitted to the master and processed. Then, command or instruction for further action is transmitted from the server to the mobile robot in a bi-directional full duplex communication mode. Hence, the main “brain” is in the server instead of the mobile robot. This paper will focus on the interfacing between Bluetooth tranceiver and Handy Board MC68HC11 micro-controller of mobile robot. For common case, a receiver and transmitter are needed for each device (robot and control unit), but with Bluetooth technology, only two Bluetooth transceivers are needed to achieve full duplex connection. This project has provided a Bluetooth enabled mobile robot. The mobile robot can be controled wirelessly via Bluetooth transceiver. Key words: Bluetooth Technology; bi-directional; full duplex; autonomously; Handy Board

2009 ◽  
Vol 06 (03) ◽  
pp. 181-191
Author(s):  
LEONIMER FLAVIO DE MELO ◽  
JOSE FERNANDO MANGILI

This paper presents the virtual environment implementation for simulation and design conception of supervision and control systems for mobile robots, that are capable to operate and adapt in different environments and conditions. The purpose of this virtual system is to facilitate the development of embedded architecture systems, emphasizing the implementation of tools that allow the simulation of the kinematic conditions, dynamic and control, with monitoring in real time of all important system points. For this, an open control architecture is proposed, integrating the two main techniques of robotic control implementation in the hardware level: systems microprocessors and reconfigurable hardware devices. The implemented simulator system is composed of a trajectory generating module, a kinematic and dynamic simulator module, and an analysis module of results and errors. All the kinematic and dynamic results obtained during the simulation can be evaluated and visualized in graphs and table formats in the results analysis module, allowing the improvement of the system, minimizing the errors with the necessary adjustments and optimization. For controller implementation in the embedded system, it uses the rapid prototyping which is the technology that allows in set, with the virtual simulation environment, the development of a controller project for mobile robots. The validation and tests had been accomplished with nonholonomic mobile robot models with differential transmission.


2015 ◽  
Vol 2 (1-2.) ◽  
Author(s):  
Gergely Nagymáté

The spreading of mobile robots is getting more significant nowadays. This is due to their ability to perform tasks that are dangerous, uncomfortable or impossible to people. The mobile robot must be endowed with a wide variety of sensors (cameras, microphones, proximity sensors, etc.) and processing units that makes them able to navigate in their environment. This generally carried out with unique, small series produced and thus expensive equipment. This paper describes the concept of a mobile robot with a control unit integrating the processing and the main sensor functionalities into one mass produced device, an Android smartphone. The robot is able to perform tasks such as tracking colored objects or human faces and orient itself. In the meantime, it avoids obstacles and keeps the distance between the target and itself. It is able to verbally communicate wit.


Author(s):  
CHUXIN CHEN ◽  
MOHAN M. TRIVEDI

A Simulation, Animation, Visualization and Interactive Control (SAVIC) environment has been developed for the design and operation of an integrated robotic manipulator system. This unique system possesses the abilities for (1) multi-sensor simulation, (2) kinematics and locomotion animation, (3) dynamic motion and manipulation animation, (4) transformation between real and virtual modes within the same graphics system, (5) ease in exchanging software modules and hardware devices between real and virtual world operations, and (6) interfacing with a real robotic system. This research is focused on enhancing the overall productivity of an integrated human-robot system. This paper describes a working system and illustrates the concepts by presenting the simulation, animation and control methodologies for a unique mobile robot with articulated tracks, a manipulator, and sensory modules.


2009 ◽  
Vol 16-19 ◽  
pp. 1133-1137
Author(s):  
Li Xin Guo ◽  
Qiu Ye Huang ◽  
Hua Long Xie ◽  
Jin Li Li ◽  
Zhao Wen Wang

The localization of mobile robots is one of important problems for navigation of mobile robots. The wireless sensor network, i.e., Cricket wireless localization technology, was used to obtain motive condition of mobile objects in this study. The information transmission between the Cricket localization system and mobile robot system was achieved for localization, navigation and control of the mobile object. The errors of localization sampling data of the Cricket localization system vary within 3cm in a static condition. The Cricket localization system can meet the navigation requirement of the mobile robots.


2012 ◽  
Vol 522 ◽  
pp. 618-622
Author(s):  
Ying Xiong ◽  
Shi De Xiao ◽  
Shuang Jiang Lei ◽  
Feng Zha

An intelligent tracking control system based on the micro-control unit (MCU) has been developed to control the motors by sensing the change of black guide lines. After the training of the BP Neural Network, the MCU is able to make decisions quickly and accurately for various situations during robot moving. Using MCU technology to control the motors, the system is compatible for both manual and automatic control. The experiment shows that the mobile robot could follow the change of black guide lines accurately and quickly, and stillness and out-of-orbit were effectively inhibited during moving. The proposed tracking control system based on the BP Neural Network has been verified to have high reliability.


2017 ◽  
Vol 14 (4) ◽  
pp. 172988141772078 ◽  
Author(s):  
Xueshan Gao ◽  
Dengqi Cui ◽  
Wenzeng Guo ◽  
Yu Mu ◽  
Bin Li

A transformable wheel–track robot with the tail rod whose winding will coordinate the center of gravity of the robot is researched, and a theoretical basis for the stable climbing of the robot is provided. After a general introduction of the research, firstly the mechanical hardware and control hardware composition of the wheel–track robot is provided and the principles of its mechanical structure are illustrated. Secondly, through studying the fundamental constrains during the process of the robot climbing the obstacles, a mathematical model based on classical mechanics method is built to help analyze the dynamic principles of a wheel–track mobile robot climbing stairs. Thirdly, the dynamic stability analysis is carried out by analyzing not only the interaction among forces of track, track edge, and stair step but also the different stabilities of the robot when the track and the stairs have different touch points. Finally, an experiment of the modeling track robot climbing the stairs has convinced the effectiveness of the dynamic theories researched, which will be a beneficial reference for the future mobile robots obstacle climbing studies.


Author(s):  
Thomas Sugar ◽  
Vijay Kumar

Abstract We describe a novel design for a compliant arm that can be mounted on a mobile robot. The main features of the arm are the in-parallel architecture of the arm and a novel control scheme that allows us to easily control the Cartesian stiffness or impedance in the plane. Because the arm is compliant, a mobile robot can manipulate or interact with objects that are not precisely positioned in the environment. Further, a mobile robot equipped with such an arm can cooperate with other mobile robots in manipulation tasks. For example, two such arms can hold an object in a stable grasp by applying and maintaining appropriate contact forces with the appropriate stiffness. We present experimental results that show the performance of the compliant arm and the use of the arm while two platforms cooperate in a manipulation task.


2022 ◽  
Vol 12 (1) ◽  
pp. 419
Author(s):  
Ferdinando Vitolo ◽  
Andrea Rega ◽  
Castrese Di Marino ◽  
Agnese Pasquariello ◽  
Alessandro Zanella ◽  
...  

Enabling technologies that drive Industry 4.0 and smart factories are pushing in new equipment and system development also to prevent human workers from repetitive and non-ergonomic tasks inside manufacturing plants. One of these tasks is the order-picking which consists in collecting parts from the warehouse and distributing them among the workstations and vice-versa. That task can be completely performed by a Mobile Manipulator that is composed by an industrial manipulator assembled on a Mobile Robot. Although the Mobile Manipulators implementation brings advantages to industrial applications, they are still not widely used due to the lack of dedicated standards on control and safety. Furthermore, there are few integrated solutions and no specific or reference point allowing the safe integration of mobile robots and cobots (already owned by company). This work faces the integration of a generic mobile robot and collaborative robot selected from an identified set of both systems. The paper presents a safe and flexible mechatronic interface developed by using MBSE principles, multi-domain modeling, and adopting preliminary assumptions on the hardware and software synchronization level of both involved systems. The interface enables the re-using of owned robot systems differently from their native tasks. Furthermore, it provides an additional and redundant safety level by enabling power and force limiting both during cobot positioning and control system faulting.


Author(s):  
Noor Abdul Khaleq Zghair ◽  
Ahmed S. Al-Araji

<span lang="EN-US">Recently, autonomous mobile robots have gained popularity in the modern world due to their relevance technology and application in real world situations. The global market for mobile robots will grow significantly over the next 20 years. Autonomous mobile robots are found in many fields including institutions, industry, business, hospitals, agriculture as well as private households for the purpose of improving day-to-day activities and services. The development of technology has increased in the requirements for mobile robots because of the services and tasks provided by them, like rescue and research operations, surveillance, carry heavy objects and so on. Researchers have conducted many works on the importance of robots, their uses, and problems. This article aims to analyze the control system of mobile robots and the way robots have the ability of moving in real-world to achieve their goals. It should be noted that there are several technological directions in a mobile robot industry. It must be observed and integrated so that the robot functions properly: Navigation systems, localization systems, detection systems (sensors) along with motion and kinematics and dynamics systems. All such systems should be united through a control unit; thus, the mission or work of mobile robots are conducted with reliability.</span>


2021 ◽  
Vol 343 ◽  
pp. 08016
Author(s):  
Marton Gyarmati ◽  
Mihai Olimpiu Tătar ◽  
Francisc Kadar

In this paper the authors present contributions to the development of search and rescue mobile robots. The first part of the paper describes the characteristics of search and rescue field. In the second part the authors presented the development and construction of an experimental prototype focusing on the locomotion systems for the search and rescue field and the results of the physical experiments done and the design and development of a proposed search and rescue mobile robot based on the lessons learned from the experiments. The third part contains the operation and control of the robot. The fourth section presents the simulation of the hybrid locomotion system of the proposed search and rescue mobile robot. The last part of the paper contains the development directions and conclusions.


Sign in / Sign up

Export Citation Format

Share Document