EXTERNAL PARTICLE SHAPE ANALYSIS AND ITS EFFECT ON TRIBOLOGICAL PERFORMANCE OF DISC BRAKE

2016 ◽  
Vol 78 (9) ◽  
Author(s):  
Ahmad Fawwaz Abdul Aziz ◽  
Mohd Kameil Abdul Hamid

The open design of disc brake and its location close to the road surface may lead the road particles of various sizes and shapes to enter in between brake pads and disc rotor. This study presents an experimental approach to determine the particle shape effect on friction and wear characteristics of OEM disc brake under different operating condition. Two types of external particles which are road particles and silica sand with two range of size of 200 µm and 400 µm were used. Testing was conducted for variable load and sliding speed. Presence of external particle with various size and shape affect the wear rate, friction coefficient and surface topography of the brake pad. Smaller particle generated more wear. Moreover, the particles which have sharped shape or high angularity resulted in higher weight loss of the pad and contribute to greater formation of compacted wear debris. Wear rate and friction coefficient also increase with contact pressure.   

2004 ◽  
Vol 4 (5-6) ◽  
pp. 131-138 ◽  
Author(s):  
Ö. Akgiray ◽  
E. Soyer ◽  
E. Yüksel

The application of the Ergun equation to predict the expansion of filter media during backwashing is investigated. Fluidization data from the literature have been analyzed and the values k1=3.519 and k2=0.266 have been found to give a very good fit to the data in the range of Reynolds numbers of interest in filter backwashing. An empirical equation that is applicable over a wider range of Reynolds numbers than the Ergun equation is also developed. New experiments have been carried out with glass spheres, plastic spheres, silica sand, and crushed glass. The effect of particle shape on expansion behaviour is investigated. It is found that the influence of particle shape is larger than previously recognized. Furthermore, the shape effect depends on the Reynolds number based on the backwash velocity. The advantages, limitations, and range of applicability of each method of calculation are delineated.


2020 ◽  
Vol 72 (10) ◽  
pp. 1153-1158 ◽  
Author(s):  
Yafei Deng ◽  
Xiaotao Pan ◽  
Guoxun Zeng ◽  
Jie Liu ◽  
Sinong Xiao ◽  
...  

Purpose This paper aims to improve the tribological properties of aluminum alloys and reduce their wear rate. Design/methodology/approach Carbon is placed in the model at room temperature, pour 680°C of molten aluminum into the pressure chamber, and then pressed it into the mold containing carbon felt through a die casting machine, and waited for it to cool, which used an injection pressure of 52.8 MPa and held the same pressure for 15 s. Findings The result indicated that the mechanical properties of matrix and composite are similar, and the compressive strength of the composite is only 95% of the matrix alloy. However, the composite showed a low friction coefficient, the friction coefficient of Gr/Al composite is only 0.15, which just is two-third than that of the matrix alloy. Similarly, the wear rate of the composite is less than 4% of the matrix. In addition, the composite can avoid severe wear before 200°C, but the matrix alloy only 100°C. Originality/value This material has excellent friction properties and is able to maintain this excellent performance at high temperatures. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0454/


Author(s):  
Ying Yan ◽  
Xuelin Lei ◽  
Yun He

The effect of nanoscale surface texture on the frictional and wear performances of nanocrystalline diamond films under water-lubricating conditions were comparatively investigated using a reciprocating ball-on-flat tribometer. Although the untreated nanocrystalline diamond film shows a stable frictional state with an average friction coefficient of 0.26, the subsequent textured films show a beneficial effect on rapidly reducing the friction coefficient, which decreased to a stable value of 0.1. Furthermore, compared with the nanocrystalline diamond coating, the textured films showed a large decreasing rate of the corresponding ball wear rate from 4.16 × 10−3 to 1.15 × 10−3 mm3/N/m. This is due to the fact that the hydrodynamic fluid film composed of water and debris can provide a good lubrication environment, so the entire friction process has reached the state of fluid lubrication. Meanwhile, the surface texture can greatly improve the hydrophilicity of the diamond films, and as the texture density increases, the water contact angle decreases from 94.75° of the nanocrystalline diamond film to 78.5° of the textured films. The proper textured diamond film (NCD90) exhibits superior tribological properties among all tested diamond films, such as short run-in period, low coefficient of friction, and wear rate.


2020 ◽  
Vol 15 (4) ◽  
pp. 543-549
Author(s):  
Haydar Kepekci ◽  
Ergin Kosa ◽  
Cüneyt Ezgi ◽  
Ahmet Cihan

Abstract The brake system of an automobile is composed of disc brake and pad which are co-working components in braking and accelerating. In the braking period, due to friction between the surface of the disc and pad, the thermal heat is generated. It should be avoided to reach elevated temperatures in disc and pad. It is focused on different disc materials that are gray cast iron and carbon ceramics, whereas pad is made up of a composite material. In this study, the CFD model of the brake system is analyzed to get a realistic approach in the amount of transferred heat. The amount of produced heat can be affected by some parameters such as velocity and friction coefficient. The results show that surface temperature for carbon-ceramic disc material can change between 290 and 650 K according to the friction coefficient and velocity in transient mode. Also, if the disc material gray cast iron is selected, it can change between 295 and 500 K. It is claimed that the amount of dissipated heat depends on the different heat transfer coefficient of gray cast iron and carbon ceramics.


2010 ◽  
Vol 654-656 ◽  
pp. 2763-2766 ◽  
Author(s):  
Li Wen Mu ◽  
Xin Feng ◽  
Yi Jun Shi ◽  
Huai Yuan Wang ◽  
Xiao Hua Lu

The tribological properties of polyimide (PI) composites reinforced with graphite or MoS2 sliding in liquid alkali and water as well as dry friction were investigated using a ring-on-ring tester. The results show that the friction coefficient (μ) and wear rate (W) for both graphite/PI and MoS2/PI composites in different liquid mediums are μdry>μwater >μalkali and Wwater>Wdry >Walkali. Results also indicate that the friction coefficient and wear rate of the PI composites filled with different solid lubricants are μMoS2 >μgraphite and W MoS2 >Wgraphite in different liquid mediums. In addition, the hydrophobic inorganic fillers are fit for the reinforcement of polymer-based composites sliding in liquid mediums. It is also concluded from the authors’ work that the wear rate and friction coefficient of polymer-based (such as PI, PTFE) composites in the alkali lubricated conditions is lowest among all the friction conditions. This may be attributed to the ionic hydration in the alkaline solution.


RSC Advances ◽  
2015 ◽  
Vol 5 (79) ◽  
pp. 64254-64260 ◽  
Author(s):  
Jin Yang ◽  
Hongtao Zhang ◽  
Beibei Chen ◽  
Hua Tang ◽  
Changsheng Li ◽  
...  

The g-C3N4/Cu nanocomposite was prepared by in situ reduction of Cu2+ adsorbed on the surface defects of g-C3N4, and it exhibited the best lubricating behavior with the lowest friction coefficient and wear rate compared to g-C3N4 or Cu nanoparticles.


2021 ◽  
pp. 1-27
Author(s):  
Alexander Grenadyorov ◽  
Andrey Solovyev ◽  
Konstantin Oskomov

Abstract The paper presents the experimental study of the friction and wear characteristics of amorphous carbon coating containing hydrogen and SiOx (a-C:H:SiOx) deposited onto WC-8Co cemented carbide substrates. A 5 μm thick a-C:H:SiOx coating was fabricated using plasma-assisted chemical vapor deposition. The tribological properties of the a-C:H:SiOx coating sliding in contact with WC–8Co, ZrO2, SiC, Si3N4 counter bodies, are examined using the ball-on-disc method at different normal loads and sliding speeds. Tribology testing shows that the minimum values of the friction coefficient (0.044) and the wear rate (9.3×10−8 mm3/Nm) are observed when using a counter body made of silicon nitride at a 5 N indentation load. The load increase from 5 to 12 N raises the friction coefficient up to 0.083 and the wear rate up to 46×10−8 mm3/Nm. When the sliding speed reaches its critical value, the coating friction provides the transition from sp3 hybridized to sp2 hybridized and polymeric carbon, which is accompanied by the reduction in the friction coefficient. The a-C:H:SiOx coating provides an increase in the critical sliding speed up to 50–75 mm/s, which exceeds that of non-alloyed (a-C and a-C:H) diamond-like carbon coatings as a result of doping by silicon and oxygen.


Sign in / Sign up

Export Citation Format

Share Document