scholarly journals Comparative study of Malaysian and Nigerian kaolin-based ceramic hollow fiber membranes for filtration application

2020 ◽  
Vol 16 (2) ◽  
pp. 182-185
Author(s):  
Jamilu Usman ◽  
Mohd Hafiz Dzarfan Othman ◽  
Ahmad Fauzi Ismail ◽  
Mukhlis A Rahman ◽  
Juhana Jaafar ◽  
...  

Ceramic membrane has gained increasing interest in water filtration application due to its inherent characteristics. Low-cost clay materials are preferred to fabricate an efficient and cost-effective ceramic membrane. Among the ceramics, kaolin displays better mechanical, thermal, and chemical properties. However, natural properties of kaolin vary from different studies. Hence, cost-effective Nigeria (NK) and Malaysia (MK) kaolins were compared to study the fabrication of kaolin hollow fiber ceramic membrane for filtration application. The effects of kaolin loading concentration (34 and 37 wt. %) and sintering temperature (1200, 1350, 1400, and 1500 °C) on kaolin membrane fabrication were also studied. XRF studies indicated that the hydroxyl silica and alumina compositions were 56.76wt.% and 41.97wt% for NK and 55.21wt.% and 40.33wt% for MK. MK exhibited intense kaolinite peak with a broad range of particle size distribution. The mechanical stability of kaolin ceramic membrane increased with the increase of sintering temperature and kaolin loading concentration. Membrane morphology also varied with MK and NK. Interestingly, 34wt% kaolin at a sintered temperature of 1350 °C produced ceramic membrane with a high water flux. A similar trend was observed in both MK and NK, where the flux of 34wt% MK and NK are 565 and 460 L/m2h, respectively.

2017 ◽  
Vol 79 (1-2) ◽  
Author(s):  
Nur Hamizah Mohtor ◽  
Mohd Hafiz Dzarfan Othman ◽  
A. F. Ismail ◽  
Mukhlis A. Rahman ◽  
Juhana Jaafar ◽  
...  

Ceramic membrane has the ability to surpass the utilisation of polymeric membrane in the application that requiring high temperature and pressure condition, as well as harsh chemical environment. Due to the high cost of ceramic membrane, various attempts have been made to use low cost ceramic materials as alternatives to well-known expensive metal oxides. In this work, local Malaysian kaolin has been chosen as ceramic material since it is inexpensive and easily available in Malaysia for the preparation of low cost hollow fibre ceramic membrane. The aim of this work is to study the effect of sintering temperature on the morphology, properties, and performance of kaolin hollow fibre membrane by sintering the prepared precursor at different target temperatures ranging from 1300°C to 1500 °C. The experimental results demonstrated that the kaolin membrane sintered at 1400 °C has influenced the formation of sufficient dense sponge-like structure of skin layer, resulting in good water flux of 74 L/h.m2.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1939
Author(s):  
Helyati Abu Hassan Shaari ◽  
Muhammad Mahyiddin Ramli ◽  
Mohd Nazim Mohtar ◽  
Norizah Abdul Rahman ◽  
Azizan Ahmad

Poly(methyl methacrylate) (PMMA) is a lightweight insulating polymer that possesses good mechanical stability. On the other hand, polyaniline (PANi) is one of the most favorable conducting materials to be used, as it is easily synthesized, cost-effective, and has good conductivity. However, most organic solvents have restricted potential applications due to poor mechanical properties and dispersibility. Compared to PANi, PMMA has more outstanding physical and chemical properties, such as good dimensional stability and better molecular interactions between the monomers. To date, many research studies have focused on incorporating PANi into PMMA. In this review, the properties and suitability of PANi as a conducting material are briefly reviewed. The major parts of this paper reviewed different approaches to incorporating PANi into PMMA, as well as evaluating the modifications to improve its conductivity. Finally, the polymerization condition to prepare PMMA/PANi copolymer to improve its conductivity is also discussed.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 711
Author(s):  
Wan Fan ◽  
Dong Zou ◽  
Jingrui Xu ◽  
Xianfu Chen ◽  
Minghui Qiu ◽  
...  

Support is a necessary foundation for ceramic membranes to achieve high performance. Finding the optimum balance between high performance and low cost is still a significant challenge in the fabrication of ceramic supports. In this study, low-cost fly ash-based ceramic supports with enhanced performance were prepared by the addition of bauxite. The pore structure, mechanical strength, and shrinkage of fly ash/bauxite supports could be tuned by optimizing the bauxite content and sintering temperature. When the sintering temperature and bauxite content were controlled at 1300 °C and 40 wt%, respectively, the obtained membrane supports exhibited a high pure water permeance of approximately 5.36 m3·m−2·h−1·bar−1 and a high bending strength of approximately 69.6 MPa. At the same time, the optimized ceramic supports presented a typical mullite phase and excellent resistance to acid and alkali. This work provides a potential route for the preparation of ceramic membrane supports with characteristics of low cost and high performance.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhangli Liu ◽  
Jiaxing Xu ◽  
Min Xu ◽  
Caifeng Huang ◽  
Ruzhu Wang ◽  
...  

AbstractThermally driven water-based sorption refrigeration is considered a promising strategy to realize near-zero-carbon cooling applications by addressing the urgent global climate challenge caused by conventional chlorofluorocarbon (CFC) refrigerants. However, developing cost-effective and high-performance water-sorption porous materials driven by low-temperature thermal energy is still a significant challenge. Here, we propose a zeolite-like aluminophosphate with SFO topology (EMM-8) for water-sorption-driven refrigeration. The EMM-8 is characterized by 12-membered ring channels with large accessible pore volume and exhibits high water uptake of 0.28 g·g−1 at P/P0 = 0.2, low-temperature regeneration of 65 °C, fast adsorption kinetics, remarkable hydrothermal stability, and scalable fabrication. Importantly, the water-sorption-based chiller with EMM-8 shows the potential of achieving a record coefficient of performance (COP) of 0.85 at an ultralow-driven temperature of 63 °C. The working performance makes EMM-8 a practical alternative to realize high-efficient ultra-low-temperature-driven refrigeration.


2016 ◽  
Vol 73 (9) ◽  
pp. 2159-2167 ◽  
Author(s):  
Huyan Shi ◽  
Lixin Xue ◽  
Ailin Gao ◽  
Qingbo Zhou

Dual layer polyvinylidene fluoride (PVDF), antibacterial, hollow fiber, ultra-filtration composite membranes with antibacterial particles (silver (Ag) nano-particles loaded zeolite (Z-Ag)) in the outer layer were prepared with high water flux and desired pore sizes. The amounts of Ag+ released from the composite membranes, freshly made and stored in water and salt solution, were measured. The result indicated that dual layer PVDF antibacterial hollow fiber containing Z-Ag (M-1-Ag) still possessed the ability of continuous release of Ag+ even after exposure to water with high ionic content, showing a longer term resistance to bacterial adhesion and antibacterial activity than membrane doped with Z-Ag+ (M-1). Results from an anti-adhesion and bacteria killing test with Escherichia coli supported that the antibacterial efficiency of dual hollow fiber PVDF membranes with Z-Ag was much higher than those with Z-Ag+ after long time storage in water or exposure to phosphate buffered saline (PBS) solution. This novel hollow fiber membrane may find applications in constructing sea water pretreatment devices with long term antifouling capability for the desalination processes.


2013 ◽  
Vol 750-752 ◽  
pp. 828-831 ◽  
Author(s):  
Chao Zhuang ◽  
Zhi Qing Luo ◽  
Wen Qing Chen

For their excellent physical and chemical properties, PTFE hollow fiber membranes can be used in harsh environment of water treatment. But the membranes cannot be prepared by conventional methods, such as the melting processing methods and the dry-wet spinning processing methods, because of a high melting point of 327°C and chemical stability. In this paper a method of extrusion-stretching-sintering is used, and using this method we get the membranes with high fracture strength (10MPa) and high pure water flux (1500L/(m2*h)), also the retention rate of bovine serum albumin reaching 50%, which meets the laboratory microfiltration membrane requirements.


2010 ◽  
Vol 150-151 ◽  
pp. 1315-1320 ◽  
Author(s):  
Jian Mian Deng ◽  
Jin Dun Liu ◽  
Hao Qin Zhang ◽  
Ya Tao Zhang ◽  
Dong Cheng

Charged mosaic membrane (CMM) has high water flux, low salt retention and high organic rejection. The tri-channel hollow fiber charged-mosaic membrane (CMM) was prepared by interfacial polymerization (IP). The tri-channel polysulfone (PSF) hollow fiber ultrafiltration(UF) membrane was used as the support membrane. Polyethylenimine (PEI), 2, 5-diamino-benzenesulfonic acid (DIA) and basic fuchsin (BF) were used as aqueous phase monomer. Trimesoyl chloride (TMC) was used as organic phase monomer. ATR-IR, scanning electron microscope (SEM) and gas sorption analyzer (GSA) were applied in structural analysis of CMM. The uniform design and SPSS were applied in membrane preparation and data analysis.The polymer ATR-IR spectroscopy shows IP occurrence between aqueous phase monomer and organic phase monomer. Polymer contains both sulfonate group and quaternary ammonium group. It show that the membrane has the feature of CMM. Regression equation was gained, and it shows the CMM retention would enhance with the concentration increase of DIA, PEI and SDS and decrease with concentration decrease of FB in experimental range. The composite layer can be observed from membrane SEM after IP. The CMM retention to NaCl, polyethylene glycol(PEG), Xylenol orange and Methyl chloride is12.4%, 90%, 96%,88% and 88.2% respectively.


2021 ◽  
Author(s):  
Menaka Salam ◽  
Namdol Nilza

Landfill leachates contain both dissolved and suspended material and may pose a threat to the environment because of the toxic substances that it carries and contaminates surface water and groundwater. They are composed of several different categories of components out of which many of them are recalcitrant and highly toxic. Major components of landfill leachates are dissolved organic compounds, inorganic macro compounds, heavy metals such as copper, lead, cadmium, chromium, nickel etc. and xenobiotic compounds such as polychlorinated biphenyls. Complex organic compounds which are released from industrial effluents like perfluorooctanoic acid and benzothiazole are also common in many of the landfill leachates. Biological treatment is a low cost effective method for the treatment of landfill leachates which can act as an accelerator for further treatment by either chemical or physical method. Improved strategies have been developed in the biological treatment of leachates which shows the efficiency of the system. But, as leachate characteristics vary depending on the rainfall and other environmental factors, it is important to first thoroughly analyze the physical and chemical properties of the landfill under study. A combined effort involving proper analysis of the leachate components, monitoring leachate flow, risk assessment, and treatment of the leachate before its release is required to efficiently control its impact to the environment.


2020 ◽  
Author(s):  
Chao Cheng ◽  
Hongming Fu ◽  
Heng Zhang ◽  
Haiping Chen ◽  
Dan Gao

Abstract Ceramic membrane method for moisture recovery from flue gas of thermal power plants is of considerable interest due to its excellent selection performance and corrosion resistance. However, manufacturing costs of commercial ceramic membranes are still relatively expensive, which promotes the development of new methods of preparing low-cost ceramic membranes. In this study, a method for the preparation of porous ceramic membrane supports is proposed. Low-cost fly ash from power plants is the main material of the membrane supports, and talcum is the additive. The fabrication process of the ceramic membrane supports is described in detail. The properties of the supports were fully characterized, including surface morphology, phase composition, pore diameter distribution and porosity. Corrosion resistance and mechanical strength of the supports were measured. The obtained ceramic membrane support displays a pore size of about 5 µm and porosity of 37.8%. Furthermore, the water recovery performance of the supports under different operating conditions was experimentally studied. The experimental results show that, the recovered water flux varies with operating conditions. In the study, the maximum recovered water flux reaches 5.22 kg/(m2·h). The findings provide a guidance for the ceramic membrane supports application of water recovery from flue gas.


Sign in / Sign up

Export Citation Format

Share Document