scholarly journals Dominance of individual plant species is more important than diversity in explaining plant biomass in the forest understorey

2018 ◽  
Vol 29 (3) ◽  
pp. 521-531 ◽  
Author(s):  
Safaa Wasof ◽  
Jonathan Lenoir ◽  
Tarek Hattab ◽  
Aurélien Jamoneau ◽  
Emilie Gallet-Moron ◽  
...  
Author(s):  
Michaela Hillermannová ◽  
Radovan Kopp ◽  
Ivo Sukop ◽  
Tomáš Vítek

The aim of the performed research was to obtain knowledge on the ability of aquatic plants naturally growing at a site to absorb trace metals contained in bottom sediments and surface water. Furthermore, we compared differences in the accumulation of trace metals by the individual groups of aquatic plants (submerged and emergent) and assessed a possible use of the individual plant species in phytoremediation techniques. Representative samples of water, sediments and aquatic macrophytes were taken from three anthropogenically loaded streams in six monitoring cycles in several collection profiles differing in the distance from a source of contamination. The samples were analysed for the total content of selected trace metals (As, Cd, Pb, Al, Hg, Zn, Fe, Mn, Cr, Ni and Cu). For comparison, one profile at an unloaded site was sampled as well. The obtained results were subjected to multivariate statistical analysis of data. Increased contents of Fe, Al, Mn, Cr and Zn were detected in sediments and plant biomass at loaded sites, namely 2–3× higher than at the comparing site. The contents of metals in surface water samples were altogether below the detection limit of the analytical method. When evaluating the individual plant species, we can state that the lowest contents of metals were detected in shore species (reed canary grass Phalaroides arundinacea, wood club-rush Scirpus silvaticus and red dock Rumex aquaticus); plant species growing in the very water current (water star-wort Callitriche sp. and flote-grass Glyceria fluitans) exhibited mean contents of metals. In species forming mats (Fontinalis antipyretica and Cladophora sp.), these contents were several times higher as compared to the previous species. The results of the performed research show that one of important factors, which influence the accumulation of trace metals in plants, is their ecological group (emergent – submerged) affiliation and the species classification within this group. Based on the evaluated data, we can recommend species of moss and algae that form mats eventually species growing in the very water flow for the future use in phytoremediation techniques.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 451
Author(s):  
Moritz von Cossel ◽  
Lorena Agra Pereira ◽  
Iris Lewandowski

The global demand for plant biomass to provide bioenergy and heat is continuously increasing because of a growing interest among many industrialized and developing countries towards climate sound and renewable energy supply. The exacerbation of land-use conflicts proliferates social-ecological demands on future bioenergy cropping systems. Perennial herbaceous wild plant mixtures (WPMs) represent an approach to providing social-ecologically more sustainably produced biogas substrate that has gained increasing public and political interest only in recent years. The focus of this study lies on three perennial wild plant species (WPS) that usually dominate the biomass yield performance of WPM cultivation. These WPS were compared with established biogas crops in terms of their substrate-specific methane yield (SMY) and lignocellulosic composition. The plant samples were investigated in a small-scale mesophilic discontinuous biogas batch test for determining the SMY. All WPS were found to have significantly lower SMY (241.5–248.5 lN kgVS−1) than maize (337.5 lN kgVS−1). This was attributed to higher contents of lignin (9.7–12.8% of dry matter) as well as lower contents of hemicellulose (9.9–11.5% of dry matter) in the WPS. Only minor, non-significant differences to cup plant and Virginia mallow were observed. Thus, when planning WPS as a diversification measure in biogas cropping systems, their lower SMY should be considered.


Oecologia ◽  
2021 ◽  
Vol 195 (1) ◽  
pp. 213-223
Author(s):  
Mark A. Lee ◽  
Grace Burger ◽  
Emma R. Green ◽  
Pepijn W. Kooij

AbstractPlant and animal community composition changes at higher elevations on mountains. Plant and animal species richness generally declines with elevation, but the shape of the relationship differs between taxa. There are several proposed mechanisms, including the productivity hypotheses; that declines in available plant biomass confers fewer resources to consumers, thus supporting fewer species. We investigated resource availability as we ascended three aspects of Helvellyn mountain, UK, measuring several plant nutritive metrics, plant species richness and biomass. We observed a linear decline in plant species richness as we ascended the mountain but there was a unimodal relationship between plant biomass and elevation. Generally, the highest biomass values at mid-elevations were associated with the lowest nutritive values, except mineral contents which declined with elevation. Intra-specific and inter-specific increases in nutritive values nearer the top and bottom of the mountain indicated that physiological, phenological and compositional mechanisms may have played a role. The shape of the relationship between resource availability and elevation was different depending on the metric. Many consumers actively select or avoid plants based on their nutritive values and the abundances of consumer taxa vary in their relationships with elevation. Consideration of multiple nutritive metrics and of the nutritional requirements of the consumer may provide a greater understanding of changes to plant and animal communities at higher elevations. We propose a novel hypothesis for explaining elevational diversity gradients, which warrants further study; the ‘nutritional complexity hypothesis’, where consumer species coexist due to greater variation in the nutritional chemistry of plants.


2004 ◽  
Vol 18 (3) ◽  
pp. 605-610 ◽  
Author(s):  
Diego J. Bentivegna ◽  
Osvaldo A. Fernández ◽  
María A. Burgos

Chemical weed control with acrolein has been shown to be a lower cost method for reducing submerged plant biomass of sago pondweed in the irrigation district of the Lower Valley of Rio Colorado, Argentina (39°10′S–62°05′W). However, no experimental data exist on the effects of the herbicide on plant growth and its survival structures. Field experiments were conducted during 3 yr to evaluate the effect of acrolein on growth and biomass of sago pondweed and on the source of underground propagules (i.e., rhizomes, tubers, and seeds). Plant biomass samples were collected in irrigation channels before and after several herbicide treatments. The underground propagule bank was evaluated at the end of the third year. Within each treatment, plant biomass was significantly reduced by 40 to 60% in all three study years. Rapid new plant growth occurred after each application; however, it was less vigorous after repeated treatments. At the end of the third year at 3,000 m downstream from the application point, plant biomass at both channels ranged from 34 to 3% of control values. Individual plant weight and height were affected by acrolein treatments, flowering was poor, and seeds did not reach maturity. After 3 yr, acrolein did not reduce the number of tubers. However, they were significantly smaller and lighter. Rhizomes fresh weight decreased by 92%, and seed numbers decreased by 79%. After 3 yr of applications, operational functioning of the channels could be maintained with fewer treatments and lower concentrations of acrolein.


Nematology ◽  
2007 ◽  
Vol 9 (1) ◽  
pp. 131-142 ◽  
Author(s):  
Maria Viketoft

AbstractThis study describes the nematode community in a semi-natural grassland and investigates if certain individual plant species can cause a spatial structure in the nematode fauna. Nematode communities were analysed in soil under Trifolium repens, Festuca ovina and from randomly taken samples. Seventy-nine nematode genera were identified. Some of the species found have not previously been reported from Sweden. Multivariate analysis separated the nematode communities associated with the two selected plant species from each other, and several individual nematode genera differed in abundance between the plant species. Trifolium repens supported greater populations of the plant feeder Tylenchorhynchus and the bacterial feeders Eucephalobus, Chiloplacus, Eumonhystera and Panagrolaimus, but fewer numbers of the bacterial feeder Achromadora. Soil under F. ovina contained more nematodes from the family Alaimidae. A comparison is given with other studies from grassland systems in Sweden.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1750
Author(s):  
María Pilar Bernal ◽  
Donatella Grippi ◽  
Rafael Clemente

Phytomanagement of trace element-contaminated soils combines sustainable soil remediation with the use of plant biomass for different applications. Consequently, phytostabilization using plant species useful for bioenergy production has recently received increasing attention. However, the water requirement of most of these species is a limitation for their use under Mediterranean climatic conditions. In this work, eight plant species growing naturally in mine soils contaminated by trace elements were evaluated for their use as bioenergy crops using thermochemical (combustion) and biochemical (anaerobic digestion) methods. The higher heating values of the biomass of the plants studied were all within a narrow range (16.03–18.75 MJ kg−1), while their biochemical methane potentials ranged from 86.0 to 227.4 mL CH4 (g VS)−1. The anaerobic degradation was not influenced by the presence of trace elements in the plants, but the mineral content (mainly Na) negatively affected the potential thermal energy released by combustion (HHV). The highest annual energy yields from biogas or combustion could be obtained by the cultivation of Phragmites australis and Arundo donax, followed by Piptatherum miliaceum. Both options can be considered to be suitable final destinations for the biomass obtained in the phytostabilization of trace element-contaminated soils and may contribute to the implementation of these remediation techniques in Mediterranean areas.


Author(s):  
Santonu Goswami ◽  
John Gamon ◽  
Sergio Vargas ◽  
Craig Tweedie

Here we investigate relationships between NDVI, Biomass, and Leaf Area Index (LAI) for six key plant species near Barrow, Alaska. We explore how key plant species differ in biomass, leaf area index (LAI) and how can vegetation spectral indices be used to estimate biomass and LAI for key plant species. A vegetation index (VI) or a spectral vegetation index (SVI) is a quantitative predictor of plant biomass or vegetative vigor, usually formed from combinations of several spectral bands, whose values are added, divided, or multiplied in order to yield a single value that indicates the amount or vigor of vegetation. For six key plant species, NDVI was strongly correlated with biomass (R2 = 0.83) and LAI (R2 = 0.70) but showed evidence of saturation above a biomass of 100 g/m2 and an LAI of 2 m2/m2. Extrapolation of a biomass-plant cover model to a multi-decadal time series of plant cover observations suggested that Carex aquatilis and Eriophorum angustifolium decreased in biomass while Arctophila fulva and Dupontia fisheri increased 1972-2008.


2010 ◽  
Vol 19 (4) ◽  
pp. 490 ◽  
Author(s):  
Erich K. Dodson ◽  
David W. Peterson ◽  
Richy J. Harrod

Slope stabilisation treatments like mulching and seeding are used to increase soil cover and reduce runoff and erosion following severe wildfires, but may also retard native vegetation recovery. We evaluated the effects of seeding and fertilisation on the cover and richness of native and exotic plants and on individual plant species following the 2004 Pot Peak wildfire in Washington State, USA. We applied four seeding and three fertilisation treatments to experimental plots at eight burned sites in spring 2005 and surveyed vegetation during the first two growing seasons after fire. Seeding significantly reduced native non-seeded species richness and cover by the second year. Fertilisation increased native plant cover in both years, but did not affect plant species richness. Seeding and fertilisation significantly increased exotic cover, especially when applied in combination. However, exotic cover and richness were low and treatment effects were greatest in the first year. Seeding suppressed several native plant species, especially disturbance-adapted forbs. Fertilisation, in contrast, favoured several native understorey plant species but reduced tree regeneration. Seeding, even with native species, appears to interfere with the natural recovery of native vegetation whereas fertilisation increases total plant cover, primarily by facilitating native vegetation recovery.


Sign in / Sign up

Export Citation Format

Share Document