scholarly journals Effects of drought on the composition and structure of benthic macroinvertebrate assemblages – a case study

Author(s):  
Pavla Řezníčková ◽  
Lenka Tajmrová ◽  
Petr Pařil ◽  
Světlana Zahrádková

Natural drying up of streams is not common in Central Europe. Nevertheless, the recurrent drying up of small streams in last decades has shown an urgent need to pay attention to the impact of global climate change. This strong disturbance influences conditions in streams markedly and causes changes in the taxonomical and functional structure of biota. The aim of the study was to compare aquatic macroinvertebrate assemblages of one intermittent and one permanent brook in South Moravia. The study was carried out in two stretches with otherwise comparable environmental parameters. Lower densities of macroinvertebrates were found at the intermittent site the difference was statistically significant. The number of taxa and diversity were significantly higher at the permanent site. Functional structure of the assemblages also varied. The shares of rheobionts, grazers and predators differed.

Biologia ◽  
2010 ◽  
Vol 65 (4) ◽  
Author(s):  
Pavla Řezníčková ◽  
Tomáš Soldán ◽  
Petr Pařil ◽  
Světlana Zahrádková

AbstractThe recurrent drying out of small streams in past decades has shown an urgent need to pay attention to the impact of global climate change. The objectives of this study were to describe the effect of drying out on the composition of the mayfly taxocene and evaluate the relevance of individual species traits for survival of mayflies to drying out. The mayfly taxocenes of two model localities, one at an intermittent and one at a permanent brook, were investigated in 2002, 2003 and 2005. Compared with the permanent stream, the taxocene of the intermittent stream was short of nine species, foremost rheobionts and high oxygen demand species. To explain further differences between both stream types in survival and recolonisation ability, 15 species traits were evaluated. These included so-called “ecological traits” (e.g., habitat and substrate range, density, distribution, current velocity adaptation) and “biological traits” connected with life cycle and larval/adult adaptations. Species showing the highest number of advantageous traits (with only exception of Electrogena sp. cf. ujhelyii — species of taxonomically unclear status) were able to successfully survive under the unfavourable conditions of the intermittent brook. Biological traits considered more important in many respects seem to be good predictors for assessing sensitivity to extreme temperature changes, hydrological regime fluctuations and the survival/recolonisation ability of species in exposed habitats.


2020 ◽  
Vol 375 (1810) ◽  
pp. 20190516
Author(s):  
Anders Lindroth ◽  
Jutta Holst ◽  
Maj-Lena Linderson ◽  
Mika Aurela ◽  
Tobias Biermann ◽  
...  

The Nordic region was subjected to severe drought in 2018 with a particularly long-lasting and large soil water deficit in Denmark, Southern Sweden and Estonia. Here, we analyse the impact of the drought on carbon and water fluxes in 11 forest ecosystems of different composition: spruce, pine, mixed and deciduous. We assess the impact of drought on fluxes by estimating the difference (anomaly) between year 2018 and a reference year without drought. Unexpectedly, the evaporation was only slightly reduced during 2018 compared to the reference year at two sites while it increased or was nearly unchanged at all other sites. This occurred under a 40 to 60% reduction in mean surface conductance and the concurrent increase in evaporative demand due to the warm and dry weather. The anomaly in the net ecosystem productivity (NEP) was 93% explained by a multilinear regression with the anomaly in heterotrophic respiration and the relative precipitation deficit as independent variables. Most of the variation (77%) was explained by the heterotrophic component. Six out of 11 forests reduced their annual NEP with more than 50 g C m −2 yr −1 during 2018 as compared to the reference year. The NEP anomaly ranged between −389 and +74 g C m −2 yr −1 with a median value of −59 g C m −2 yr −1 . This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale’.


Author(s):  
T. Berdimbetov ◽  
S. Nietullaeva ◽  
A. Yegizbayeva

Since 1960, water level began to decline considerably due to anthropogenic impact of the Aral Sea (AS), and it is continued to this day, which has led to dramatic changes in the climate around the AS, including ambient temperatures and sharp increases in evapotranspiration. Although, it isn't possible to see normal trend in this precipitation. Time series analysis of the FTI (First Time Interval 1901-1960) and STI (Second Time Interval, 1960-2015), highlighting climate change around the AS, based on Global Climate Data, suggests that there is a significant negative difference between precipitation and evapotranspiration during the drying of the AS. It is possible to see the logical compatibility of the air temperature and difference between precipitation and evapotranspiration observed around the AS, i.e. the temperature fluctuation trend is positive and contrary to the difference between precipitation and evapotranspiration negative trend, which means that the annual hydrological budget was reduced according to the time scale. In this article, determining the AS as the central point, we analyze the changes in the thermal and hydrological processes observed on the AS, as well as the impact to the environment of anomalous climate change observed on and around the sea like the drying out of the AS.


2021 ◽  
Vol 6 ◽  
pp. 100
Author(s):  
Michael Davies ◽  
Kristine Belesova ◽  
Melanie Crane ◽  
Joanna Hale ◽  
Andy Haines ◽  
...  

The Complex Urban Systems for Sustainability and Health (CUSSH) project is a global research programme on the complex systemic connections between urban development and health. Through transdisciplinary methods it will develop critical evidence on how to achieve the far-reaching transformation of cities needed to address vital environmental imperatives for planetary health in the 21st century. CUSSH’s core components include: (i) a review of evidence on the effects of climate actions (both mitigation and adaptation) and factors influencing their implementation in urban settings; (ii) the development and application of methods for tracking the progress of cities towards sustainability and health goals; (iii) the development and application of models to assess the impact on population health, health inequalities, socio-economic development and environmental parameters of urban development strategies, in order to support policy decisions; (iv) iterative in-depth engagements with stakeholders in partner cities in low-, middle- and high-income settings, using systems-based participatory methods, to test and support the implementation of the transformative changes needed to meet local and global health and sustainability objectives; (v) a programme of public engagement and capacity building. Through these steps, the programme will provide transferable evidence on how to accelerate actions essential to achieving population-level health and global climate goals through, amongst others, changing cities’ energy provision, transport infrastructure, green infrastructure, air quality, waste management and housing.


2021 ◽  
Vol 6 ◽  
pp. 100
Author(s):  
Michael Davies ◽  
Kristine Belesova ◽  
Melanie Crane ◽  
Joanna Hale ◽  
Andy Haines ◽  
...  

This paper describes a global research programme on the complex systemic connections between urban development and health. Through transdisciplinary methods the Complex Urban Systems for Sustainability and Health (CUSSH) project will develop critical evidence on how to achieve the far-reaching transformation of cities needed to address vital environmental imperatives for planetary health in the 21st Century. CUSSH’s core components include: (i) a review of evidence on the effects of climate actions (both mitigation and adaptation) and factors influencing their implementation in urban settings; (ii) the development and application of methods for tracking the progress of cities towards sustainability and health goals; (iii) the development and application of models to assess the impact on population health, health inequalities, socio-economic development and environmental parameters of urban development strategies, in order to support policy decisions; (iv) iterative in-depth engagements with stakeholders in partner cities in low-, middle- and high-income settings, using systems-based participatory methods, to test and support the implementation of the transformative changes needed to meet local and global health and sustainability objectives; (v) a programme of public engagement and capacity building. Through these steps, the programme will provide transferable evidence on how to accelerate actions essential to achieving population-level health and global climate goals through, amongst others, changing cities’ energy provision, transport infrastructure, green infrastructure, air quality, waste management and housing.


Author(s):  
Sazrul Leena Binti Sa’adin ◽  
Sakdirat Kaewunruen ◽  
David Jaroszweski

Warming of the climate system is unequivocal, and many of the observed changes are unprecedented over five decades to millennia. Globally the atmosphere and ocean is increasingly getting warmer, the amount of ice on the earth is decreasing over the oceans, and the sea level has risen. According to Intergovernmental Panel on Climate Change, the total increasing temperature globally averaged combined land and surface between the average of the 1850-1900 period and the 2003 to 2012 period is 0.78 °C (0.72 to 0.85). But should we prepare for such the relatively small change? The importance is not the mean of the warming but the considerable likelihood of climate change that could trigger extreme natural hazards. The impact and the risk of climate change associated with railway infrastructure have not been fully addressed in the literature due to the difference in local environmental parameters. On the other hand, the current railway network in Malaysia, over the last decade, has been significantly affected by severe weather conditions such as rainfall, lightning, wind and very high temperatures. Our research findings point out the extremes that can lead to asset system failure, degraded operation and ultimately, delays to train services. During the period of flood, the embankment of the track can be swept away and bridge can be demolished, while during drought, the embankment of the track can suffer from soil desiccation and embankment deterioration, high temperature increases the risk of track buckling and high winds can result in vegetation or foreign object incursion on to the infrastructure as well as additional quasi-static burden exerted. This review is of significant importance for planning and design of the newly proposed high speed rail link between Malaysia and Singapore.


2019 ◽  
pp. 109-123
Author(s):  
I. E. Limonov ◽  
M. V. Nesena

The purpose of this study is to evaluate the impact of public investment programs on the socio-economic development of territories. As a case, the federal target programs for the development of regions and investment programs of the financial development institution — Vnesheconombank, designed to solve the problems of regional development are considered. The impact of the public interventions were evaluated by the “difference in differences” method using Bayesian modeling. The results of the evaluation suggest the positive impact of federal target programs on the total factor productivity of regions and on innovation; and that regional investment programs of Vnesheconombank are improving the export activity. All of the investments considered are likely to have contributed to the reduction of unemployment, but their implementation has been accompanied by an increase in social inequality.


2020 ◽  
Vol 4 (2) ◽  
pp. 150
Author(s):  
Farzana Sharmin Pamela Islam

As 21st century is the era of modern technologies with different aspects, it offers us to make the best use of them. After tape recorder and overhead projector (OHP), multimedia has become an important part of language classroom facilities for its unique and effective application in delivering and learning lesson. Although in many parts of Bangladesh, a South Asian developing country, where English enjoys the status of a foreign language, the use of multimedia in teaching and learning is viewed as a matter of luxury. However, nowadays the usefulness and the necessity of it are well recognized by the academics as well as the government. The study aims to focus on the difference between a traditional classroom void of multimedia and multimedia equipped classrooms at university level by explaining how multimedia support the students with enhanced opportunity to interact with diverse texts that give them more in-depth comprehension of the subject. It also focuses on audio-visual advantage of multimedia on the students’ English language learning. The study has followed a qualitative method to get an in-depth understanding of the impact of using multimedia in an English language classroom at tertiary level. For this purpose, the data have been collected from two different sources. Firstly, from students’ written response to  an open ended question as to their comparative experience of learning  lessons with and without multimedia facilities; and secondly, through  observation of English language classes at a private university of Dhaka, the capital city of Bangladesh. The discussion of the study is limited to  the use of multimedia in English language classroom using cartoons, images and music with a view to enhance students’ skills in academic writing, critical analysis of image and critical appreciation of music. For this purpose, cartoons in English language, images from Google and music from You Tube have got focused discussion in this paper.


2020 ◽  
Vol 68 (4) ◽  
pp. 303-314
Author(s):  
Yuna Park ◽  
Hyo-In Koh ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
...  

Railway noise is calculated to predict the impact of new or reconstructed railway tracks on nearby residential areas. The results are used to prepare adequate counter- measures, and the calculation results are directly related to the cost of the action plans. The calculated values were used to produce noise maps for each area of inter- est. The Schall 03 2012 is one of the most frequently used methods for the production of noise maps. The latest version was released in 2012 and uses various input para- meters associated with the latest rail vehicles and track systems in Germany. This version has not been sufficiently used in South Korea, and there is a lack of standard guidelines and a precise manual for Korean railway systems. Thus, it is not clear what input parameters will match specific local cases. This study investigates the modeling procedure for Korean railway systems and the differences between calcu- lated railway sound levels and measured values obtained using the Schall 03 2012 model. Depending on the location of sound receivers, the difference between the cal- culated and measured values was within approximately 4 dB for various train types. In the case of high-speed trains, the value was approximately 7 dB. A noise-reducing measure was also modeled. The noise reduction effect of a low-height noise barrier system was predicted and evaluated for operating railway sites within the frame- work of a national research project in Korea. The comparison of calculated and measured values showed differences within 2.5 dB.


Sign in / Sign up

Export Citation Format

Share Document