A Theoretical Model of Uniform Flow Distribution for the Admission of High-Energy Fluids to a Surface Steam Condenser

2001 ◽  
Vol 123 (2) ◽  
pp. 472-475 ◽  
Author(s):  
J. Wang ◽  
G. H. Priestman ◽  
D. Wu

An analytical study is made of the perforated pipe distributor for the admission of high-energy fluids to a surface steam condenser. The results show that for all perforated pipes there is a general characteristic parameter MkD/Lf, which depends on the pipe geometry and flow properties. Four cases are considered based on the value of the characteristic parameter M. (1) When M⩾1/4, momentum controls and the main channel static pressure will increase in the direction of the streamline. (2) When 1/6⩽M<1/4, the momentum effect balances friction losses and the pressure will decrease to a minimum, and then increase in the direction of flow to a positive value. (3) When 0<M<1/6, friction controls and the pressure will decrease to a minimum, then increase slowly, but the total pipe static pressure difference will always be negative. (4) When M=0, a limiting case when the ratio of the length to the diameter is infinite. This analysis is useful not only for the design of perforated pipe distributors for turbine condensers over a wide range of dimensions, fluid properties, and side hole pressure but also for many other technical systems requiring branching flow distribution.

Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Author(s):  
S. Likharev ◽  
A. Kramarenko ◽  
V. Vybornov

At present time the interest is growing considerably for theoretical and experimental analysis of back-scattered electrons (BSE) energy spectra. It was discovered that a special angle and energy nitration of BSE flow could be used for increasing a spatial resolution of BSE mode, sample topography investigations and for layer-by layer visualizing of a depth structure. In the last case it was shown theoretically that in order to obtain suitable depth resolution it is necessary to select a part of BSE flow with the directions of velocities close to inverse to the primary beam and energies within a small window in the high-energy part of the whole spectrum.A wide range of such devices has been developed earlier, but all of them have considerable demerit: they can hardly be used with a standard SEM due to the necessity of sufficient SEM modifications like installation of large accessories in or out SEM chamber, mounting of specialized detector systems, input wires for high voltage supply, screening a primary beam from additional electromagnetic field, etc. In this report we present a new scheme of a compact BSE energy analyzer that is free of imperfections mentioned above.


2021 ◽  
Vol 22 (15) ◽  
pp. 7879
Author(s):  
Yingxia Gao ◽  
Yi Zheng ◽  
Léon Sanche

The complex physical and chemical reactions between the large number of low-energy (0–30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Duy Tung Phan ◽  
Chang Won Jung

AbstractAn electromagnetic pulse (EMP) with high energy can damage electronic equipment instantly within a wide range of thousands of kilometers. Generally, a metal plate placed inside a thick concrete wall is used against an EMP, but it is not suitable for an EMP shielding window, which requires not only strong shielding effectiveness (SE) but also optical transparency (OT). In this paper, we propose a very thin and optically transparent structure with excellent SE for EMP shielding window application. The proposed structure consists of a saltwater layer held between two glass substrates and two metal mesh layers on the outside of the glass, with a total thickness of less than 1.5 cm. The SE and OT of the structure are above 80 dB and 45%, respectively, which not only meet the requirement of EMP shielding for military purposes but also retain the procedure of good observation. Moreover, the OT of the structure can be significantly improved using only one metal mesh film (MMF) layer, while the SE is still maintained high to satisfy the required SE for home applicants. With the major advantages of low cost, optical transparency, strong SE, and flexible performance, the proposed structure can be considered a good solution for transparent EMP shielding windows.


Author(s):  
Akila C. Thenuwara ◽  
Pralav P. Shetty ◽  
Neha Kondekar ◽  
Chuanlong Wang ◽  
Weiyang Li ◽  
...  

A new dual-salt liquid electrolyte is developed that enables the reversible operation of high-energy sodium-metal-based batteries over a wide range of temperatures down to −50 °C.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Antonio Costantini ◽  
Federico De Lillo ◽  
Fabio Maltoni ◽  
Luca Mantani ◽  
Olivier Mattelaer ◽  
...  

Abstract High-energy lepton colliders with a centre-of-mass energy in the multi-TeV range are currently considered among the most challenging and far-reaching future accelerator projects. Studies performed so far have mostly focused on the reach for new phenomena in lepton-antilepton annihilation channels. In this work we observe that starting from collider energies of a few TeV, electroweak (EW) vector boson fusion/scattering (VBF) at lepton colliders becomes the dominant production mode for all Standard Model processes relevant to studying the EW sector. In many cases we find that this also holds for new physics. We quantify the size and the growth of VBF cross sections with collider energy for a number of SM and new physics processes. By considering luminosity scenarios achievable at a muon collider, we conclude that such a machine would effectively be a “high-luminosity weak boson collider,” and subsequently offer a wide range of opportunities to precisely measure EW and Higgs couplings as well as discover new particles.


1990 ◽  
Vol 43 (5) ◽  
pp. 583
Author(s):  
GL Price

Recent developments in the growth of semiconductor thin films are reviewed. The emphasis is on growth by molecular beam epitaxy (MBE). Results obtained by reflection high energy electron diffraction (RHEED) are employed to describe the different kinds of growth processes and the types of materials which can be constructed. MBE is routinely capable of heterostructure growth to atomic precision with a wide range of materials including III-V, IV, II-VI semiconductors, metals, ceramics such as high Tc materials and organics. As the growth proceeds in ultra high vacuum, MBE can take advantage of surface science techniques such as Auger, RHEED and SIMS. RHEED is the essential in-situ probe since the final crystal quality is strongly dependent on the surface reconstruction during growth. RHEED can also be used to calibrate the growth rate, monitor growth kinetics, and distinguish between various growth modes. A major new area is lattice mismatched growth where attempts are being made to construct heterostructures between materials of different lattice constants such as GaAs on Si. Also described are the new techniques of migration enhanced epitaxy and tilted superlattice growth. Finally some comments are given On the means of preparing large area, thin samples for analysis by other techniques from MBE grown films using capping, etching and liftoff.


2010 ◽  
Vol 1 (SRMS-7) ◽  
Author(s):  
David Pennicard ◽  
Heinz Graafsma ◽  
Michael Lohmann

The new synchrotron light source PETRA-III produced its first beam last year. The extremely high brilliance of PETRA-III and the large energy range of many of its beamlines make it useful for a wide range of experiments, particularly in materials science. The detectors at PETRA-III will need to meet several requirements, such as operation across a wide dynamic range, high-speed readout and good quantum efficiency even at high photon energies. PETRA-III beamlines with lower photon energies will typically be equipped with photon-counting silicon detectors for two-dimensional detection and silicon drift detectors for spectroscopy and higher-energy beamlines will use scintillators coupled to cameras or photomultiplier tubes. Longer-term developments include ‘high-Z’ semiconductors for detecting high-energy X-rays, photon-counting readout chips with smaller pixels and higher frame rates and pixellated avalanche photodiodes for time-resolved experiments.


Author(s):  
Marcus Kuschel ◽  
Bastian Drechsel ◽  
David Kluß ◽  
Joerg R. Seume

Exhaust diffusers downstream of turbines are used to transform the kinetic energy of the flow into static pressure. The static pressure at the turbine outlet is thus decreased by the diffuser, which in turn increases the technical work as well as the efficiency of the turbine significantly. Consequently, diffuser designs aim to achieve high pressure recovery at a wide range of operating points. Current diffuser design is based on conservative design charts, developed for laminar, uniform, axial flow. However, several previous investigations have shown that the aerodynamic loading and the pressure recovery of diffusers can be increased significantly if the turbine outflow is taken into consideration. Although it is known that the turbine outflow can reduce boundary layer separations in the diffuser, less information is available regarding the physical mechanisms that are responsible for the stabilization of the diffuser flow. An analysis using the Lumley invariance charts shows that high pressure recovery is only achieved for those operating points in which the near-shroud turbulence structure is axi-symmetric with a major radial turbulent transport component. This turbulent transport originates mainly from the wake and the tip vortices of the upstream rotor. These structures energize the boundary layer and thus suppress separation. A logarithmic function is shown that correlates empirically the pressure recovery vs. the relevant Reynolds stresses. The present results suggest that an improved prediction of diffuser performance requires modeling approaches that account for the anisotropy of turbulence.


2021 ◽  
Author(s):  
Robert Sprenkle ◽  
Luciano Silvestri ◽  
M. S. Murillo ◽  
Scott Bergeson

Abstract New facilities such as the National Ignition Facility and the Linac Coherent Light Source have pushed the frontiers of high energy-density matter. These facilities offer unprecedented opportunities for exploring extreme states of matter, ranging from cryogenic solid-state systems to hot, dense plasmas, with applications to inertial-confinement fusion and astrophysics. However, significant gaps in our understanding of material properties in these rapidly evolving systems still persist. In particular, non-equilibrium transport properties of strongly-coupled Coulomb systems remain an open question. Here, we study ion-ion temperature relaxation in a binary mixture, exploiting a recently-developed dual-species ultracold neutral plasma. We compare measured relaxation rates with atomistic simulations and a range of popular theories. Our work validates the assumptions and capabilities of the simulations and invalidates theoretical models in this regime. This work illustrates an approach for precision determinations of detailed material properties in Coulomb mixtures across a wide range of conditions.


Sign in / Sign up

Export Citation Format

Share Document