scholarly journals Screening Analysis for EPACT-Covered Commercial HVAC and Water-Heating Equipment

2002 ◽  
Vol 124 (2) ◽  
pp. 116-124 ◽  
Author(s):  
Sriram Somasundaram ◽  
David W. Winiarski ◽  
David B. Belzer

PNNL, under direction from DOE, conducted a screening analysis to determine the energy savings potential from the efficiency levels for commercial HVAC and water-heating equipment listed in Standard 90.1-1999, as well as the potential from several higher efficiency levels. We estimated the annual energy consumption for each type of equipment, at various efficiency levels, through engineering simulations for seven building types in 11 U.S. locations. We also conducted an economic analysis to identify the efficiency levels that would provide the highest value of economic benefits. From 2004 through 2030, the estimated national energy savings for the equipment meeting the Standard 90.1-1999 efficiency levels is about 3.8 exajoules (EJ) (3.6 quads).1 The total estimated carbon emissions reduction is 52 MMtons.

2000 ◽  
Author(s):  
S. Somasundaram ◽  
D. W. Winiarski ◽  
D. B. Belzer

Abstract The Energy Policy and Conservation Act (EPCA), as amended by the Energy Policy Act of 1992 (EPACT), establishes that the U.S. Department of Energy (DOE) regulate efficiency levels of certain commercial heating, ventilating, and air-conditioning (HVAC) and service water-heating (SWH) equipment categories. Initial minimum efficiency levels for products falling under these categories were established in EPACT, based on the requirements in ASHRAE/IES Standard 90.1-1989. EPCA requirements state that, if the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) amends efficiency levels prescribed in Standard 90.1-1989, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in amended Standard 90.1. On October 29, 1999, ASHRAE approved the amended Standard 90.1 (Standard 90.1-1999), which increases the minimum efficiency levels for some of the commercial HVAC and SWH equipment covered by EPCA 92. DOE asked Pacific Northwest National Laboratory (PNNL)2 to conduct a screening analysis to determine the energy-savings potential of the efficiency levels listed in Standard 90.1-1999. The analysis estimated the annual national energy savings and carbon emissions reductions that would result if the EPACT-covered products were required to meet these efficiency levels, and additional energy-savings potential for these products if they exceeded these levels. From 2004 through 2030, the estimated national energy savings achieved by adopting Standard 90.1-1999 efficiency levels for spacecooling equipment is about 3 quadrillion Btu (quads3). The energy savings potential for space-heating equipment is about 0.5 quad and for water-heating equipment is about 0.06 quad. The cumulative commercial-sector building energy consumption during the same time period is estimated to be 485 quads. The total carbon emissions reduction is about 52 millions of metric tons (MMtons).


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2398 ◽  
Author(s):  
Lin Zhu ◽  
Lichun He ◽  
Peipei Shang ◽  
Yingchun Zhang ◽  
Xiaojun Ma

The power industry is the industry with the most direct uses of fossil fuels in China and is one of China’s main carbon industries. A comprehensive and accurate analysis of the impacts of carbon emissions by the power industry can reveal the potential for carbon emissions reductions in the power industry to achieve China’s emissions reduction targets. The main contribution of this paper is the use of a Generalized Divisia Index Model for the first time to factorize the change of carbon emissions in China’s power industry from 2000 to 2015, and gives full consideration to the influence of the economy, population, and energy consumption on the carbon emissions. At the same time, the Monte Carlo method is first used to predict the carbon emissions of the power industry from 2017 to 2030 under three different scenarios. The results show that the output scale is the most important factor leading to an increase in carbon emissions in China’s power industry from 2000 to 2015, followed by the energy consumption scale and population size. Energy intensity levels have always promoted carbon emissions reduction in the power industry, where energy intensity and carbon intensity effects of energy consumption have great potential to mitigate carbon levels. By setting the main factors affecting carbon emissions in the future three scenarios, this paper predicts the carbon emissions of China’s power industry from 2017 to 2030. Under the baseline scenario, the maximum probability range of the potential annual growth rate of carbon emissions by the power industry in China from 2017 to 2030 is 1.9–2.2%. Under the low carbon scenario and technological breakthrough scenario, carbon emissions in China’s power industry continue to decline from 2017 to 2030. The maximum probability range of the potential annual drop rate are measured at 1.6–2.1% and 1.9–2.4%, respectively. The results of this study show that China’s power industry still has great potential to reduce carbon emissions. In the future, the development of carbon emissions reduction in the power industry should focus on the innovation and development of energy saving and emissions reduction technology on the premise of further optimizing the energy structure and adhering to the low-carbon road.


2021 ◽  
Author(s):  
Xiaomei LUAN ◽  
Danny Chunying Cui ◽  
Dianping Zhang ◽  
Junyue XIE ◽  
Ziwei YAN

Abstract West-to-East gas transmission project (WEGTP) is a major energy construction programm in China. Evaluating its impacts on the energy consumption and carbon emissions(ECER) in involved provinces is of great significance for further achieve the goals of high-quality development. This paper takes WEGTP as a quasi-natural experiment, calculates the total energy consumption and carbon emissions by employing the provincial panel data of 1997-2017, and applies a counterfactual framework under Rubin Causal Model (RCM) to estimate the ECER policy effect of WEGTP Line I Subproject. It is found that WEGTP generates an overall carbon emissions reduction effect in the involved provinces. Further heterogeneity analysis points out that the project has an obvious energy conservation effect on the natural gas importer provinces, however the emissions reduction effect is not significant, while the project has significant positive effects on energy conservation and emissions reduction in the natural gas exporter provinces. Based on the results, WEGTP has played a long-term role in promoting energy structure optimization and carbon emissions reduction. It is still necessary to figure out the price mechanism of natural gas consumption, actively promote the structure of industrial, and meet the objective requirements of high-quality development with the actual effects of energy conservation and emissions reduction.


2021 ◽  
Vol 13 (13) ◽  
pp. 7148
Author(s):  
Wenjie Zhang ◽  
Mingyong Hong ◽  
Juan Li ◽  
Fuhong Li

The implementation of green finance is a powerful measure to promote global carbon emissions reduction that has been highly valued by academic circles in recent years. However, the role of green credit in carbon emissions reduction in China is still lacking testing. Using a set of panel data including 30 provinces and cities, this study focused on the impact of green credit on carbon dioxide emissions in China from 2006 to 2016. The empirical results indicated that green credit has a significantly negative effect on carbon dioxide emissions intensity. Furthermore, after the mechanism examination, we found that the promotion impacts of green credit on industrial structure upgrading and technological innovation are two effective channels to help reduce carbon dioxide emissions. Heterogeneity analysis found that there are regional differences in the effect of green credit. In the western and northeastern regions, the effect of green credit is invalid. Quantile regression results implied that the greater the carbon emissions intensity, the better the effect of green credit. Finally, a further discussion revealed there exists a nonlinear correlation between green credit and carbon dioxide emissions intensity. These findings suggest that the core measures to promote carbon emission reduction in China are to continue to expand the scale of green credit, increase the technology R&D investment of enterprises, and to vigorously develop the tertiary industry.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


Sign in / Sign up

Export Citation Format

Share Document