An Algorithmic Strategy for Automated Generation of Multicomponent Software Tools for Virtual Manufacturing

2004 ◽  
Vol 127 (4) ◽  
pp. 866-874 ◽  
Author(s):  
Patrick N. Bless ◽  
Shiv G. Kapoor ◽  
Richard E. DeVor ◽  
Diego Klabjan

This paper describes an algorithmic strategy to facilitate the generation of multicomponent software tools for computer-aided manufacturing (CAM) and virtual manufacturing (VM). Components that are often used to build CAM and VM applications include a wide range of domain-specific knowledge sources and also more general utility components with often very heterogeneous characteristics. The identification of a suitable and compatible set of these components is the first and arguably most important step during the development process of any CAM or VM application. This paper presents an algorithmic strategy that automates this development step by solving a time-expanded network problem, referred to as the component set identification (CSI) problem. A definition of the CSI problem, a mathematical formulation, a solution procedure, and some computational results are presented. Finally, an application to predict hole quality in drilling is used to illustrate the functionality of the proposed algorithmic strategy.

Author(s):  
Н.А. Рындин

В статье описывается алгоритмическая стратегия, способствующая созданию многокомпонентных программных средств. Представлено определение задачи идентификации набора компонентов, математическая формулировка, процедура решения и некоторые результаты вычислений. The article describes an algorithmic strategy that contributes to the creation of multicomponent software tools. The definition of the problem of identifying a set of components, a mathematical formulation, a solution procedure and some calculation results are presented.


Author(s):  
Denis Tikhomirov

The purpose of the article is to typologize terminological definitions of security, to find out the general, to identify the originality of their interpretations depending on the subject of legal regulation. The methodological basis of the study is the methods that made it possible to obtain valid conclusions, in particular, the method of comparison, through which it became possible to correlate different interpretations of the term "security"; method of hermeneutics, which allowed to elaborate texts of normative legal acts of Ukraine, method of typologization, which made it possible to create typologization groups of variants of understanding of the term "security". Scientific novelty. The article analyzes the understanding of the term "security" in various regulatory acts in force in Ukraine. Typological groups were understood to understand the term "security". Conclusions. The analysis of the legal material makes it possible to confirm that the issues of security are within the scope of both legislative regulation and various specialized by-laws. However, today there is no single conception on how to interpret security terminology. This is due both to the wide range of social relations that are the subject of legal regulation and to the relativity of the notion of security itself and the lack of coherence of views on its definition in legal acts and in the scientific literature. The multiplicity of definitions is explained by combinations of material and procedural understanding, static - dynamic, and conditioned by the peculiarities of a particular branch of legal regulation, limited ability to use methods of one or another branch, the inter-branch nature of some variations of security, etc. Separation, common and different in the definition of "security" can be used to further standardize, in fact, the regulatory legal understanding of security to more effectively implement the legal regulation of the security direction.


Author(s):  
Tim Rutherford-Johnson

By the start of the 21st century many of the foundations of postwar culture had disappeared: Europe had been rebuilt and, as the EU, had become one of the world’s largest economies; the United States’ claim to global dominance was threatened; and the postwar social democratic consensus was being replaced by market-led neoliberalism. Most importantly of all, the Cold War was over, and the World Wide Web had been born. Music After The Fall considers contemporary musical composition against this changed backdrop, placing it in the context of globalization, digitization, and new media. Drawing on theories from the other arts, in particular art and architecture, it expands the definition of Western art music to include forms of composition, experimental music, sound art, and crossover work from across the spectrum, inside and beyond the concert hall. Each chapter considers a wide range of composers, performers, works, and institutions are considered critically to build up a broad and rich picture of the new music ecosystem, from North American string quartets to Lebanese improvisers, from South American electroacoustic studios to pianos in the Australian outback. A new approach to the study of contemporary music is developed that relies less on taxonomies of style and technique, and more on the comparison of different responses to common themes, among them permission, fluidity, excess, and loss.


Author(s):  
Branka Vulesevic ◽  
Naozumi Kubota ◽  
Ian G Burwash ◽  
Claire Cimadevilla ◽  
Sarah Tubiana ◽  
...  

Abstract Aims Severe aortic valve stenosis (AS) is defined by an aortic valve area (AVA) <1 cm2 or an AVA indexed to body surface area (BSA) <0.6 cm/m2, despite little evidence supporting the latter approach and important intrinsic limitations of BSA indexation. We hypothesized that AVA indexed to height (H) might be more applicable to a wide range of populations and body morphologies and might provide a better predictive accuracy. Methods and results In 1298 patients with degenerative AS and preserved ejection fraction from three different countries and continents (derivation cohort), we aimed to establish an AVA/H threshold that would be equivalent to 1.0 cm2 for defining severe AS. In a distinct prospective validation cohort of 395 patients, we compared the predictive accuracy of AVA/BSA and AVA/H. Correlations between AVA and AVA/BSA or AVA/H were excellent (all R2 > 0.79) but greater with AVA/H. Regressions lines were markedly different in obese and non-obese patients with AVA/BSA (P < 0.0001) but almost identical with AVA/H (P = 0.16). AVA/BSA values that corresponded to an AVA of 1.0 cm2 were markedly different in obese and non-obese patients (0.48 and 0.59 cm2/m2) but not with AVA/H (0.61 cm2/m for both). Agreement for the diagnosis of severe AS (AVA < 1 cm2) was significantly higher with AVA/H than with AVA/BSA (P < 0.05). Similar results were observed across the three countries. An AVA/H cut-off value of 0.6 cm2/m [HR = 8.2(5.6–12.1)] provided the best predictive value for the occurrence of AS-related events [absolute AVA of 1 cm2: HR = 7.3(5.0–10.7); AVA/BSA of 0.6 cm2/m2 HR = 6.7(4.4–10.0)]. Conclusion In a large multinational/multiracial cohort, AVA/H was better correlated with AVA than AVA/BSA and a cut-off value of 0.6 cm2/m provided a better diagnostic and prognostic value than 0.6 cm2/m2. Our results suggest that severe AS should be defined as an AVA < 1 cm2 or an AVA/H < 0.6 cm2/m rather than a BSA-indexed value of 0.6 cm2/m2.


2021 ◽  
Vol 5 (EICS) ◽  
pp. 1-23
Author(s):  
Markku Laine ◽  
Yu Zhang ◽  
Simo Santala ◽  
Jussi P. P. Jokinen ◽  
Antti Oulasvirta

Over the past decade, responsive web design (RWD) has become the de facto standard for adapting web pages to a wide range of devices used for browsing. While RWD has improved the usability of web pages, it is not without drawbacks and limitations: designers and developers must manually design the web layouts for multiple screen sizes and implement associated adaptation rules, and its "one responsive design fits all" approach lacks support for personalization. This paper presents a novel approach for automated generation of responsive and personalized web layouts. Given an existing web page design and preferences related to design objectives, our integer programming -based optimizer generates a consistent set of web designs. Where relevant data is available, these can be further automatically personalized for the user and browsing device. The paper includes presentation of techniques for runtime adaptation of the designs generated into a fully responsive grid layout for web browsing. Results from our ratings-based online studies with end users (N = 86) and designers (N = 64) show that the proposed approach can automatically create high-quality responsive web layouts for a variety of real-world websites.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alexey Bondar ◽  
Olga Rybakova ◽  
Josef Melcr ◽  
Jan Dohnálek ◽  
Petro Khoroshyy ◽  
...  

AbstractFluorescence-detected linear dichroism microscopy allows observing various molecular processes in living cells, as well as obtaining quantitative information on orientation of fluorescent molecules associated with cellular features. Such information can provide insights into protein structure, aid in development of genetically encoded probes, and allow determinations of lipid membrane properties. However, quantitating and interpreting linear dichroism in biological systems has been laborious and unreliable. Here we present a set of open source ImageJ-based software tools that allow fast and easy linear dichroism visualization and quantitation, as well as extraction of quantitative information on molecular orientations, even in living systems. The tools were tested on model synthetic lipid vesicles and applied to a variety of biological systems, including observations of conformational changes during G-protein signaling in living cells, using fluorescent proteins. Our results show that our tools and model systems are applicable to a wide range of molecules and polarization-resolved microscopy techniques, and represent a significant step towards making polarization microscopy a mainstream tool of biological imaging.


2021 ◽  
Vol 31 ◽  
Author(s):  
ANDREA VEZZOSI ◽  
ANDERS MÖRTBERG ◽  
ANDREAS ABEL

Abstract Proof assistants based on dependent type theory provide expressive languages for both programming and proving within the same system. However, all of the major implementations lack powerful extensionality principles for reasoning about equality, such as function and propositional extensionality. These principles are typically added axiomatically which disrupts the constructive properties of these systems. Cubical type theory provides a solution by giving computational meaning to Homotopy Type Theory and Univalent Foundations, in particular to the univalence axiom and higher inductive types (HITs). This paper describes an extension of the dependently typed functional programming language Agda with cubical primitives, making it into a full-blown proof assistant with native support for univalence and a general schema of HITs. These new primitives allow the direct definition of function and propositional extensionality as well as quotient types, all with computational content. Additionally, thanks also to copatterns, bisimilarity is equivalent to equality for coinductive types. The adoption of cubical type theory extends Agda with support for a wide range of extensionality principles, without sacrificing type checking and constructivity.


Author(s):  
Ying Pin Chua ◽  
Ying Xie ◽  
Poay Sian Sabrina Lee ◽  
Eng Sing Lee

Background: Multimorbidity presents a key challenge to healthcare systems globally. However, heterogeneity in the definition of multimorbidity and design of epidemiological studies results in difficulty in comparing multimorbidity studies. This scoping review aimed to describe multimorbidity prevalence in studies using large datasets and report the differences in multimorbidity definition and study design. Methods: We conducted a systematic search of MEDLINE, EMBASE, and CINAHL databases to identify large epidemiological studies on multimorbidity. We used the Preferred Reporting Items for Systematic Reviews and Meta-analysis Extension for Scoping Reviews (PRISMA-ScR) protocol for reporting the results. Results: Twenty articles were identified. We found two key definitions of multimorbidity: at least two (MM2+) or at least three (MM3+) chronic conditions. The prevalence of multimorbidity MM2+ ranged from 15.3% to 93.1%, and 11.8% to 89.7% in MM3+. The number of chronic conditions used by the articles ranged from 15 to 147, which were organized into 21 body system categories. There were seventeen cross-sectional studies and three retrospective cohort studies, and four diagnosis coding systems were used. Conclusions: We found a wide range in reported prevalence, definition, and conduct of multimorbidity studies. Obtaining consensus in these areas will facilitate better understanding of the magnitude and epidemiology of multimorbidity.


2016 ◽  
Vol 26 (5) ◽  
pp. 1134-1157 ◽  
Author(s):  
Donghee Shin ◽  
Myunggoon Choi ◽  
Jang Hyun Kim ◽  
Jae-gil Lee

Purpose The purpose of this paper is to examine the effects of interaction techniques (e.g. swiping and tapping) and the range of thumb movement on interactivity, engagement, attitude, and behavioral intention in single-handed interaction with smartphones. Design/methodology/approach A 2×2 between-participant experiment (technological features: swiping and tapping×range of thumb movement: wide and narrow) was conducted to study the effects of interaction techniques and thumb movement ranges. Findings The results showed that the range of thumb movement had significant effects on perceived interactivity, engagement, attitude, and behavioral intention, whereas no effects were observed for interaction techniques. A narrow range of thumb movement had more influence on the interactivity outcomes in comparison to a wide range of thumb movement. Practical implications While the subject of actual and perceived interactivity has been discussed, the issue has not been applied to smartphone. Based on the research results, the mobile industry may come up with a design strategy that balances feature- and perception-based interactivity. Originality/value This study adopted the perspective of the hybrid definition of interactivity, which includes both actual and perceived interactivity. Interactivity effect outcomes mediated by perceived interactivity.


Author(s):  
P A Bracewell ◽  
U R Klement

Piping design for ‘revamp’ projects in the process industry requires the retrieval of large amounts of ‘as-built’ data from existing process plant installations. Positional data with a high degree of accuracy are required. Photogrammetry, the science of measurement from photographs, was identified in Imperial Chemical Industries plc (ICI) as a suitable tool for information retrieval. The mathematical formulation enabling the definition of three-dimensional positions from photographic information is described. The process of using ICI's photogrammetric system for the definition of complete objects such as structures and pipes is illustrated. The need for specialized photogrammetric software for design purposes is explained. A case study describing how the photogrammetric system has been applied is described and graphical outputs from this exercise are shown. It is concluded that this particular photogrammetric system has proved to be a cost effective and accurate tool for the retrieval of ‘as-built’ information.


Sign in / Sign up

Export Citation Format

Share Document