scholarly journals Plowing New Ground

2009 ◽  
Vol 131 (05) ◽  
pp. 40-44
Author(s):  
Lee S. Langston

This article presents an overview of the gas turbine industry. The annual value of production provides the vital signs for the industry. Forecast International in Newtown, Connecticut, uses its computer models and extensive database to monitor value of production for both the aviation and the non-aviation gas turbine market. The largest segment in the industry is aviation—jet engines and turboprop engines for commercial and military manned aircraft—with $21.4 billion in production. While aviation is the largest market for gas turbines, the non-aviation segment is the broadest. General Electric’s new LMS100 gas turbine is one example firmly on the cutting edge. Introduced in 2005 and rated at 100 MW, the LMS100 is the first modern production electric power gas turbine to have an intercooler. The LMS100 is aimed at the mid-merit and daily cycling segments of the electrical market—the difficult-to-predict, must-be-ready-to-start electrical peak and intermediary power providers.

Author(s):  
John Hartranft ◽  
Bruce Thompson ◽  
Dan Groghan

Following the successful development of aircraft jet engines during World War II (WWII), the United States Navy began exploring the advantages of gas turbine engines for ship and boat propulsion. Early development soon focused on aircraft derivative (aero derivative) gas turbines for use in the United States Navy (USN) Fleet rather than engines developed specifically for marine and industrial applications due to poor results from a few of the early marine and industrial developments. Some of the new commercial jet engine powered aircraft that had emerged at the time were the Boeing 707 and the Douglas DC-8. It was from these early aircraft engine successes (both commercial and military) that engine cores such as the JT4-FT4 and others became available for USN ship and boat programs. The task of adapting the jet engine to the marine environment turned out to be a substantial task because USN ships were operated in a completely different environment than that of aircraft which caused different forms of turbine corrosion than that seen in aircraft jet engines. Furthermore, shipboard engines were expected to perform tens of thousands of hours before overhaul compared with a few thousand hours mean time between overhaul usually experienced in aircraft applications. To address the concerns of shipboard applications, standards were created for marine gas turbine shipboard qualification and installation. One of those standards was the development of a USN Standard Day for gas turbines. This paper addresses the topic of a Navy Standard Day as it relates to the introduction of marine gas turbines into the United States Navy Fleet and why it differs from other rating approaches. Lastly, this paper will address examples of issues encountered with early requirements and whether current requirements for the Navy Standard Day should be changed. Concerning other rating approaches, the paper will also address the issue of using an International Organization for Standardization, that is, an International Standard Day. It is important to address an ISO STD DAY because many original equipment manufacturers and commercial operators prefer to rate their aero derivative gas turbines based on an ISO STD DAY with no losses. The argument is that the ISO approach fully utilizes the power capability of the engine. This paper will discuss the advantages and disadvantages of the ISO STD DAY approach and how the USN STD DAY approach has benefitted the USN. For the future, with the advance of engine controllers and electronics, utilizing some of the features of an ISO STD DAY approach may be possible while maintaining the advantages of the USN STD DAY.


Author(s):  
Zengo Aizawa ◽  
William Carberg

Combined cycle technology was successfully applied to the 2000 MW Tokyo Electric Power Co. (TEPCO) Futtsu Station. The fourteen 165 MW single shaft combined cycle Stages were commissioned between 1985 and 1988. Since that time, experience has been accumulated on these 2000 deg F (1100 deg C) class gas turbine based Stages. With the advent of 2300 deg F (1300 deg C) class gas turbines and dry low NOx technologies, an advanced combined cycle with substantially improved performance became possible. TEPCO commissioned General Electric, Toshiba and Hitachi to perform a study to optimize the use of these technologies. The study was completed and the participants are now doing detailed design of a plant consisting of eight 350 MW single shaft combined cycle Stages. The plant will be designated the Yokohama Thermal Power Station No. 7 and No. 8 Groups. This paper discusses experience gained at the Futtsu Station, the results of the optimization study for an advanced combined cycle and the progress of the design for Yokohama Groups No. 7 and No. 8.


Author(s):  
Nanahisa Sugiyama

This paper describes a real-time or faster-than-real-time simulation of gas turbine engines, using an ultra high speed, multi-processor digital computer, designated the AD100. It is shown that the frame time is reduced significantly without any loss of fidelity of a simulation. The simulation program is aimed at a high degree of flexibility to allow changes in engine configuration. This makes it possible to simulate various types of gas turbine engines, including jet engines, gas turbines for vehicles and power plants, in real-time. Some simulation results for an intercooled-reheat type industrial gas turbine are shown.


1997 ◽  
Vol 119 (3) ◽  
pp. 624-632 ◽  
Author(s):  
H. Nomoto ◽  
A. Koga ◽  
S. Ito ◽  
Y. Fukuyama ◽  
F. Otomo ◽  
...  

It is very essential to raise the thermal efficiency of combined cycle plants from the viewpoint of energy saving and environmental protection. Tohoku Electric Power Co., Inc., and Toshiba Corporation in Japan have jointly studied the next generation of combined cycle systems using 1500°C class gas turbine. A promising cooling technology for the vanes using steam was developed. The blades are cooled by air, adopting the impingement cooling, film cooling, and so on. The cooling effectiveness was confirmed both for the vanes and the blades using a hot wind tunnel. This paper describes the design features of the vanes and the blades, and the results of the verification tests using the hot wind tunnel.


2013 ◽  
Vol 135 (02) ◽  
pp. 30-35
Author(s):  
Lee S. Langston

This article presents a study on new electric power gas turbines and the advent of shale natural gas, which now are upending electrical energy markets. Energy Information Administration (EIA) results show that total electrical production cost for a conventional coal plant would be 9.8 cents/kWh, while a conventional natural gas fueled gas turbine combined cycle plant would be a much lower at 6.6 cents/kWh. Furthermore, EIA estimates that 70% of new US power plants will be fueled by natural gas. Gas turbines are the prime movers for the modern combined cycle power plant. On the natural gas side of the recently upended electrical energy markets, new shale gas production and the continued development of worldwide liquefied natural gas (LNG) facilities provide the other element of synergism. The US natural gas prices are now low enough to compete directly with coal. The study concludes that the natural gas fueled gas turbine will continue to be a growing part of the world’s electric power generation.


Author(s):  
T. Tauber

For oil wetted components of gas turbine engines, such as bearings, reduction and accessory drive gears, debris monitoring is the most successful and cost effective condition monitoring technique. However, extensive field service experience demonstrates that full-flow debris monitoring is essential. Full-flow debris monitoring devices, as opposed to chip detectors installed in sumps or lines, monitor the entire scavenge flow. The detection efficiency of properly designed systems can reach 100 percent. This paper briefly discusses models for debris generation in bearings and gears and reviews the principles of successful debris separation and incipient failure detection in gas turbine engines. Several devices are discussed which represent the state-of-the-art in this field, including a centrifugal debris separator for aircraft jet engines which has been shown to be highly effective in field service. Of particular interest to the user of stationary gas turbines is a quantitative debris monitoring system which provides a real-time read out of debris production levels and gives reliable advance warning of impending failure; thus reducing down time, secondary damage and overhaul costs.


Author(s):  
Gabriel Blanco ◽  
Lawrence L. Ambs

Steam injection in gas turbines has been used for many years to increase the power output as well as the efficiency of the system and, more recently, to reduce the formation of NOx during the combustion. The major drawback in steam-injected gas turbine technology is the need of large amounts of fresh water that is eventually lost into the atmosphere along with the exhaust gases. Nowadays, fresh water is not readily available in many places due to either local water shortages or environmental legislation that protects water sources from depletion and pollution. In order to deal with water constraints, water recovery systems (WRS) to recuperate the injected steam from the exhaust gases and return it to the steam injection system can be implemented. In this project, computer models for two different WRS configurations have been developed and tested. The computer models allow finding the optimum size, power requirements and capital costs of the heat exchangers involved in a particular WRS configuration. The models can also simulate the performance of WRS during a given period of time, calculating the energy consumed by fans and pumps in the process. This paper explains the details of the computer models and illustrates, as an example, the results obtained when both WRS configurations are applied to the GE LM2500 gas turbine. These results support the technical and economic feasibility of steam recovery for medium-size steam-injected gas turbines.


Author(s):  
Yoshiaki Nishimura ◽  
Sadahiro Ohno ◽  
Shinya Ishikawa ◽  
Junichiro Masada ◽  
Kazumasa Takata

As global warming becomes increasingly serious, Japan has committed to reduce the CO2 emission by 25% from 1990 levels in Japan with preconditions by the end of 2020. To reach such the difficult target, resources and energy utilizations should be more efficient than before. Tohoku Electric Power Company, Inc. (Tohoku-EPCO) has been adopting the cutting-edge gas turbines for combined cycle power plants to contribute to the reduction of energy consumption and pollutant emission. Now Tohoku-EPCO and Mitsubishi Heavy Industries, Ltd. (MHI) have started a study of next generation gas turbines to further improve the gas turbine combined cycle (GTCC) power plants efficiency. Tohoku-EPCO and MHI have invented a “closed circuit air cooling system” and a trial design of the closed circuit air cooled combustor is now being conducted as a collaborative project. Besides, the material technology development is being conducted for the further increase in the turbine Row 1 vane inlet temperature (TIT) in future.


Author(s):  
Cyrus B. Meher-Homji ◽  
A. N. Lakshminarasimha ◽  
G. Mani ◽  
Clark V. Dohner ◽  
Igor Ondryas ◽  
...  

This paper describes the methodology and approach of baseline development as part of a comprehensive Durability Surveillance Study Program of an Advanced Gas Turbine (AGT) sponsored by the Electric Power Research Institute (EPRI) on a GE Frame 7F gas turbine operating in peaking service. The gas turbine is an advanced technology 156 MW (ISO), 955 lb/sec machine operating at a turbine inlet temperature of 2300° F (rotor inlet temperature) and a pressure ratio of 13.5:1. The turbine is located at Potomac Electric Power Company (PEPCO) Station H plant in Dickerson, Maryland. In order to facilitate the durability surveillance, the turbine has a data acquisition and analysis system which obtains data from the control system (via serial port) as well as from special sensors such as proximity probes, dynamic pressure sensors, strain gauges and hot section pyrometers. With the GE Frame 7F and FA machines becoming very popular in utility applications worldwide, the EPRI Durability Surveillance Program and baseline generation methodology will be of considerable practical interest to gas turbine users. The basic methodology presented for baseline development can be used for any single shaft gas turbine. We believe the base-line to be of considerable importance in evaluating future condition of the machine as well as for maintenance planning. The paper also briefly describes the status and future plans of the EPRI durability surveillance program.


Author(s):  
Tetsuo Teramae ◽  
Yutaka Furuse ◽  
Katsuo Wada ◽  
Takashi Machida

To cope with the increasing demand of electric power, many research and development programs have been performed in the field of electric power industry. Among them, the application of highly thermal resistive ceramics to hot parts of the gas turbines is one of the most promising ways to raise the thermal efficiency of the gas turbine, and several projects have been executed in the U.S.A., Europe and Japan. Tokyo Electric Power Co., Inc. (TEPCO) also has been conducting a research project to apply ceramic components to hot parts of a 20MW class gas turbine with a turbine inlet temperature of 1300C. In this project. TEPCO and Hitachi have been conducting the cooperative research work to develop a first stage ceramic rotor blade. After several design modifications, it was decided to select ceramic blades attached directly to a metal rotor disc, and to insert metal pads between the dovetail of the ceramic blade and metal disc to convey the centrifugal force produced by the blade smoothly to the metal disc. The strength of this ceramic blade has been verified by a series of experiments such as tensile tests, room temperature spin tests, thermal loading tests, and high temperature spin tests using a high temperature gas turbine development unit (HTDU). In addition, the reliability of the ceramic blade under design and test conditions has been analyzed by a computer program GFICES (Gas turbine - Fine Ceramics Evaluation System) which was developed on the basis of statistical strength theory using two parameter Weibull probability distribution. These experiments and analyses demonstrate the integrity of the developed ceramic rotor blade.


Sign in / Sign up

Export Citation Format

Share Document