Three-Dimensional Flow of a Newtonian Liquid Through an Annular Space with Axially Varying Eccentricity

2005 ◽  
Vol 128 (2) ◽  
pp. 223-231 ◽  
Author(s):  
Eduarda P. F. de Pina ◽  
M. S. Carvalho

Flow in annular space occurs in drilling operation of oil and gas wells. The correct prediction of the flow of the drilling mud in the annular space between the well wall and the drill pipe is essential to determine the variation in the mud pressure within the wellbore, the frictional pressure drop, and the efficiency of the transport of the rock drill cuttings. A complete analysis of this situation is extremely complex: the inner cylinder is usually rotating, the wellbore wall will depart significantly from cylindrical, the drill pipe is eccentric, and the eccentricity varies along the well. A complete analysis of this situation would require the solution of the three-dimensional momentum equation and would be computationally expensive and complex. Models available in the literature to study this situation do consider the rotation of the inner cylinder and the non-Newtonian behavior of the drilling fluids, but assume the relative position of the inner with respect to the outer cylinders fixed, i.e., they neglect the variation of the eccentricity along the length of the well, and the flow is considered to be fully developed. This approximation leads to a two-dimensional model to determine the three components of the velocity field in a cross-section of the annulus. The model presented in this work takes into account the variation of the eccentricity along the well; a more appropriate description of the geometric configuration of directional wells. As a consequence, the velocity field varies along the well length and the resulting flow model is three-dimensional. Lubrication theory is used to simplify the governing equations into a two-dimensional differential equation that describes the pressure field. The results show the effect of the variation of the eccentricity on the friction factor, maximum and minimum axial velocity in each cross section, and the presence of azimuthal flow even when the inner cylinder is not rotating.

1994 ◽  
Vol 361 ◽  
Author(s):  
V.A. Alyoshin ◽  
E.V. Sviridov ◽  
V.I.M. Hukhortov ◽  
I.H. Zakharchenko ◽  
V.P. Dudkevich

ABSTRACTSurface and cross-section relief evolution of ferroelectric epitaxial (Ba,Sr)TiO3 films rf-sputtered on (001) HgO crystal cle-avage surface versus the oxygen worKing gas pressure P and subst-rate temperature T were studied. Specific features of both three-dimensional and two-dimensional epitaxy mechanisms corresponding to various deposition conditions were revealed. Difference between low and high P-T-value 3D epitaxy was established. The deposition of films with mirror-smooth surfaces and perfect interfaces is shown to be possible.


1992 ◽  
Vol 241 ◽  
pp. 587-614 ◽  
Author(s):  
T. Dracos ◽  
M. Giger ◽  
G. H. Jirka

An experimental investigation of plane turbulent jets in bounded fluid layers is presented. The development of the jet is regular up to a distance from the orifice of approximately twice the depth of the fluid layer. From there on to a distance of about ten times the depth, the flow is dominated by secondary currents. The velocity distribution over a cross-section of the jet becomes three-dimensional and the jet undergoes a constriction in the midplane and a widening near the bounding surfaces. Beyond a distance of approximately ten times the depth of the bounded fluid layer the secondary currents disappear and the jet starts to meander around its centreplane. Large vortical structures develop with axes perpendicular to the bounding surfaces of the fluid layer. With increasing distance the size of these structures increases by pairing. These features of the jet are associated with the development of quasi two-dimensional turbulence. It is shown that the secondary currents and the meandering do not significantly affect the spreading of the jet. The quasi-two-dimensional turbulence, however, developing in the meandering jet, significantly influences the mixing of entrained fluid.


2021 ◽  
Vol 5 (4) ◽  
pp. 53-60
Author(s):  
Daniel Gurgul ◽  
Andriy Burbelko ◽  
Tomasz Wiktor

This paper presents a new proposition on how to derive mathematical formulas that describe an unknown Probability Density Function (PDF3) of the spherical radii (r3) of particles randomly placed in non-transparent materials. We have presented two attempts here, both of which are based on data collected from a random planar cross-section passed through space containing three-dimensional nodules. The first attempt uses a Probability Density Function (PDF2) the form of which is experimentally obtained on the basis of a set containing two-dimensional radii (r2). These radii are produced by an intersection of the space by a random plane. In turn, the second solution also uses an experimentally obtained Probability Density Function (PDF1). But the form of PDF1 has been created on the basis of a set containing chord lengths collected from a cross-section.The most important finding presented in this paper is the conclusion that if the PDF1 has proportional scopes, the PDF3 must have a constant value in these scopes. This fact allows stating that there are no nodules in the sample space that have particular radii belonging to the proportional ranges the PDF1.


Author(s):  
Laura Galuppi ◽  
Gianni Royer-Carfagni

Prandtl's membrane analogy for the torsion problem of prismatic homogeneous bars is extended to multi-material cross sections. The linear elastic problem is governed by the same equations describing the deformation of an inflated membrane, differently tensioned in regions that correspond to the domains hosting different materials in the bar cross section, in a way proportional to the inverse of the material shear modulus. Multi-connected cross sections correspond to materials with vanishing stiffness inside the holes, implying infinite tension in the corresponding portions of the membrane. To define the interface constrains that allow to apply such a state of prestress to the membrane, a physical apparatus is proposed, which can be numerically modelled with a two-dimensional mesh implementable in commercial finite-element model codes. This approach presents noteworthy advantages with respect to the three-dimensional modelling of the twisted bar.


2020 ◽  
Vol 307 ◽  
pp. 01047
Author(s):  
Gohar Shoukat ◽  
Farhan Ellahi ◽  
Muhammad Sajid ◽  
Emad Uddin

The large energy consumption of membrane desalination process has encouraged researchers to explore different spacer designs using Computational Fluid Dynamics (CFD) for maximizing permeate per unit of energy consumed. In previous studies of zigzag spacer designs, the filaments are modeled as circular cross sections in a two-dimensional geometry under the assumption that the flow is oriented normal to the filaments. In this work, we consider the 45° orientation of the flow towards the three-dimensional zigzag spacer unit, which projects the circular cross section of the filament as elliptical in a simplified two-dimensional domain. OpenFOAM was used to simulate the mass transfer enhancement in a reverse-osmosis desalination unit employing spiral wound membranes lined with zigzag spacer filaments. Properties that impact the concentration polarization and hence permeate flux were analyzed in the domain with elliptical filaments as well as a domain with circular filaments to draw suitable comparisons. The range of variation in characteristic parameters across the domain between the two different configurations is determined. It was concluded that ignoring the elliptical projection of circular filaments to the flow direction, can introduce significant margin of error in the estimation of mass transfer coefficient.


We consider the problem of designing the section of a cylinder to minimize the drag per unit length it experiences when placed perpendicular to a uniform stream at low Reynolds number; we suppose the area of the cross-section to be given, and the flow to be two-dimensional. The relevant properties of a cylinder of general cross-section in a particular orientation can conveniently be expressed in terms of its equivalent radius; when the drag and flow at infinity are parallel, this equivalent radius is the radius of the circular cylinder giving rise to the same drag per unit length. We obtain a variational formula for this equivalent radius when the surface of the cylinder is perturbed; this shows that the optimum profile we seek must be such that the flow past it has a vorticity of constant magnitude at its surface, and this fact enables the optimum to be determined analytically. The efficacy of a particular section may be measured by its effective radius, this being the equivalent radius when the length scale is chosen to give the section an area π ; thus a circular cylinder has an effective radius of 1. The minimum possible effective radius, achieved by the optimum profile, is 0.88876. To illustrate some of the arguments we exploit in a more familiar setting, we also obtain a variational formula for the drag on a three-dimensional body in Stokes flow when its surface is perturbed.


2012 ◽  
Vol 466-467 ◽  
pp. 1271-1274
Author(s):  
Jian Zhuang Liu ◽  
Jia Li ◽  
Li Gan ◽  
Fang Fang Du

The prevenient mechanical research on U type steel support focuses on two dimensional analysis in the installing plan. Interested in the buckling failure of U type steel support’s pinnas in one coal mine of Huainan Group, the authors build three dimensional models to stimulating 25U and 29U support. The appealing simulation results verify ANSYS’s 3-D computational capabilities about complicated section support. The main objective of their investigation has been to obtain some knowledge of the mechanism, stress distribution, and load magnitude in the support’s deforming. Further, the deviating longitudinal load play an accelerating deformation role on its distorting, which should be paied more attention to cross-section optimization, design of support parameters, and installing way of steel lacing.


Author(s):  
Yilin Zhang ◽  
Shanfang Huang

Two kinds of three-dimensional model are built to simulate the gas entrainment process through a small break in the horizontal coolant pipe at the bottom of the stratified flow. The results were compared with the two-dimensional simulation results and the experimental data. In terms of the two-phase distribution, the simulation results agree well with the experimental data and show much superiority compared with the two-dimensional model. The results verify the reliability of model building, condition setting and calculating method qualitatively and quantitatively. In general, after gas entrainment, the average velocity over cross section increases obviously, but the mass flow rate decreases contrarily. This is because that void fraction meanwhile reduces the fluid density. In addition, it is found that the larger the void fraction of vapor is, the higher the average discharge velocity of the fracture cross-section fluid is. Besides, with the larger internal and external pressure difference, the gas volume fraction and the flow velocity in the break increase, resulting in the mass flow rate increasing along with them. However, since the critical height increases as well, the total loss amount of liquid in the stable effluent stage decreases, and the time before entrainment becomes shorter.


Sign in / Sign up

Export Citation Format

Share Document