Research on Buckling Mechanism of U Type Steel Support’s Pinnas Based on ANSYS

2012 ◽  
Vol 466-467 ◽  
pp. 1271-1274
Author(s):  
Jian Zhuang Liu ◽  
Jia Li ◽  
Li Gan ◽  
Fang Fang Du

The prevenient mechanical research on U type steel support focuses on two dimensional analysis in the installing plan. Interested in the buckling failure of U type steel support’s pinnas in one coal mine of Huainan Group, the authors build three dimensional models to stimulating 25U and 29U support. The appealing simulation results verify ANSYS’s 3-D computational capabilities about complicated section support. The main objective of their investigation has been to obtain some knowledge of the mechanism, stress distribution, and load magnitude in the support’s deforming. Further, the deviating longitudinal load play an accelerating deformation role on its distorting, which should be paied more attention to cross-section optimization, design of support parameters, and installing way of steel lacing.

Author(s):  
Yilin Zhang ◽  
Shanfang Huang

Two kinds of three-dimensional model are built to simulate the gas entrainment process through a small break in the horizontal coolant pipe at the bottom of the stratified flow. The results were compared with the two-dimensional simulation results and the experimental data. In terms of the two-phase distribution, the simulation results agree well with the experimental data and show much superiority compared with the two-dimensional model. The results verify the reliability of model building, condition setting and calculating method qualitatively and quantitatively. In general, after gas entrainment, the average velocity over cross section increases obviously, but the mass flow rate decreases contrarily. This is because that void fraction meanwhile reduces the fluid density. In addition, it is found that the larger the void fraction of vapor is, the higher the average discharge velocity of the fracture cross-section fluid is. Besides, with the larger internal and external pressure difference, the gas volume fraction and the flow velocity in the break increase, resulting in the mass flow rate increasing along with them. However, since the critical height increases as well, the total loss amount of liquid in the stable effluent stage decreases, and the time before entrainment becomes shorter.


2003 ◽  
Vol 125 (3) ◽  
pp. 527-532 ◽  
Author(s):  
J. W. Hobbs ◽  
R. L. Burguete ◽  
E. A. Patterson

By means of comparing results from finite element analysis and photoelasticity, the salient characteristics of a finite element model of a nut and bolt have been established. A number of two-dimensional and three-dimensional models were created with varying levels of complexity, and the results were compared with photoelastic results. It was found that both two-dimensional and three-dimensional models could produce accurate results provided the nut thread run-out and friction were modeled accurately. When using two-dimensional models, a number of models representing different positions around the helix of the thread were created to obtain more data for the stress distribution. This approach was found to work well and to be economical.


2014 ◽  
Vol 59 (4) ◽  
pp. 851-868
Author(s):  
Jerzy Krawczyk ◽  
Jakub Janus

Abstract The paper presents results of a research on the migration of methane from goaf into an area of a longwall ventilated by means of the U-type ventilation system. Two-dimensional models of the area in question were prepared. The models encompassed longwalls whose length was 240 m, as well as segments of the main and tailgate whose length was minimum 50 m. The geometry of the models took into account the details that could make three-dimensional models too complex. These details include: the ribs of the arch support of the headings, frictional and hydraulic props, and the ribs of a section of the longwall powered roof support. Additionally, the presence of gaps between the support sections, by means of which an exchange of gases between the longwall and the adjacent goaf could take place - was taken into consideration. Using the 2D description method, an analysis of the flow of air in the area was carried out. The simulation results were shown as profiles of velocity and streamlines in surrounding of intersections of longwall. with main and tailgate Then, the grid depenadncy of numerical solutions was investigated. This was done by comparing results for three grid densities. The process of methane propagation was simulated for shearer located at two-thirds of the longwall length. The fields of methane concentrations for a steady inflow from goaf were calculated. Subsequently, the effects of a sudden inflow of methane along a segment comprising ten recently advanced roof support sections were computed. The results were presented as a sequence of concentration distributions for selected simulation moments.


Author(s):  
Chenqi Zhu

In order to improve the guiding accuracy in intercepting the hypersonic vehicle, this article presents a finite-time guidance law based on the observer and head-pursuit theory. First, based on a two-dimensional model between the interceptor and target, this study applies the fast power reaching law to head-pursuit guidance law so that it can alleviate the chattering phenomenon and ensure the convergence speed. Second, target maneuvers are considered as system disturbances, and the head-pursuit guidance law based on an observer is proposed. Furthermore, this method is extended to a three-dimensional case. Finally, comparative simulation results further verify the superiority of the guidance laws designed in this article.


1998 ◽  
Vol 25 (4) ◽  
pp. 621-630 ◽  
Author(s):  
Yasser Hassan ◽  
Said M Easa

Coordination of highway horizontal and vertical alignments is based on subjective guidelines in current standards. This paper presents a quantitative analysis of coordinating horizontal and sag vertical curves that are designed using two-dimensional standards. The locations where a horizontal curve should not be positioned relative to a sag vertical curve (called red zones) are identified. In the red zone, the available sight distance (computed using three-dimensional models) is less than the required sight distance. Two types of red zones, based on stopping sight distance (SSD) and preview sight distance (PVSD), are examined. The SSD red zone corresponds to the locations where an overlap between a horizontal curve and a sag vertical curve should be avoided because the three-dimensional sight distance will be less than the required SSD. The PVSD red zone corresponds to the locations where a horizontal curve should not start because drivers will not be able to perceive it and safely react to it. The SSD red zones exist for practical highway alignment parameters, and therefore designers should check the alignments for potential SSD red zones. The range of SSD red zones was found to depend on the different alignment parameters, especially the superelevation rate. On the other hand, the results showed that the PVSD red zones exist only for large values of the required PVSD, and therefore this type of red zones is not critical. This paper should be of particular interest to the highway designers and professionals concerned with highway safety.Key words: sight distance, red zone, combined alignment.


1994 ◽  
Vol 361 ◽  
Author(s):  
V.A. Alyoshin ◽  
E.V. Sviridov ◽  
V.I.M. Hukhortov ◽  
I.H. Zakharchenko ◽  
V.P. Dudkevich

ABSTRACTSurface and cross-section relief evolution of ferroelectric epitaxial (Ba,Sr)TiO3 films rf-sputtered on (001) HgO crystal cle-avage surface versus the oxygen worKing gas pressure P and subst-rate temperature T were studied. Specific features of both three-dimensional and two-dimensional epitaxy mechanisms corresponding to various deposition conditions were revealed. Difference between low and high P-T-value 3D epitaxy was established. The deposition of films with mirror-smooth surfaces and perfect interfaces is shown to be possible.


1995 ◽  
Vol 291 ◽  
pp. 369-392 ◽  
Author(s):  
Ronald D. Joslin

The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier–Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic-source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.


1992 ◽  
Vol 241 ◽  
pp. 587-614 ◽  
Author(s):  
T. Dracos ◽  
M. Giger ◽  
G. H. Jirka

An experimental investigation of plane turbulent jets in bounded fluid layers is presented. The development of the jet is regular up to a distance from the orifice of approximately twice the depth of the fluid layer. From there on to a distance of about ten times the depth, the flow is dominated by secondary currents. The velocity distribution over a cross-section of the jet becomes three-dimensional and the jet undergoes a constriction in the midplane and a widening near the bounding surfaces. Beyond a distance of approximately ten times the depth of the bounded fluid layer the secondary currents disappear and the jet starts to meander around its centreplane. Large vortical structures develop with axes perpendicular to the bounding surfaces of the fluid layer. With increasing distance the size of these structures increases by pairing. These features of the jet are associated with the development of quasi two-dimensional turbulence. It is shown that the secondary currents and the meandering do not significantly affect the spreading of the jet. The quasi-two-dimensional turbulence, however, developing in the meandering jet, significantly influences the mixing of entrained fluid.


2021 ◽  
Vol 5 (4) ◽  
pp. 53-60
Author(s):  
Daniel Gurgul ◽  
Andriy Burbelko ◽  
Tomasz Wiktor

This paper presents a new proposition on how to derive mathematical formulas that describe an unknown Probability Density Function (PDF3) of the spherical radii (r3) of particles randomly placed in non-transparent materials. We have presented two attempts here, both of which are based on data collected from a random planar cross-section passed through space containing three-dimensional nodules. The first attempt uses a Probability Density Function (PDF2) the form of which is experimentally obtained on the basis of a set containing two-dimensional radii (r2). These radii are produced by an intersection of the space by a random plane. In turn, the second solution also uses an experimentally obtained Probability Density Function (PDF1). But the form of PDF1 has been created on the basis of a set containing chord lengths collected from a cross-section.The most important finding presented in this paper is the conclusion that if the PDF1 has proportional scopes, the PDF3 must have a constant value in these scopes. This fact allows stating that there are no nodules in the sample space that have particular radii belonging to the proportional ranges the PDF1.


1972 ◽  
Vol 1 (13) ◽  
pp. 146
Author(s):  
Joseph L. Hammack ◽  
Frederic Raichlen

A linear theory is presented for waves generated by an arbitrary bed deformation {in space and time) for a two-dimensional and a three -dimensional fluid domain of uniform depth. The resulting wave profile near the source is computed for both the two and three-dimensional models for a specific class of bed deformations; experimental results are presented for the two-dimensional model. The growth of nonlinear effects during wave propagation in an ocean of uniform depth and the corresponding limitations of the linear theory are investigated. A strategy is presented for determining wave behavior at large distances from the source where linear and nonlinear effects are of equal magnitude. The strategy is based on a matching technique which employs the linear theory in its region of applicability and an equation similar to that of Korteweg and deVries (KdV) in the region where nonlinearities are equal in magnitude to frequency dispersion. Comparison of the theoretical computations with the experimental results indicates that an equation of the KdV type is the proper model of wave behavior at large distances from the source region.


Sign in / Sign up

Export Citation Format

Share Document