An Approach to Calculate the Probability of Wave Impact on an FPSO Bow

2006 ◽  
Vol 129 (2) ◽  
pp. 73-80 ◽  
Author(s):  
C. Guedes Soares ◽  
R. Pascoal ◽  
E. M. Antão ◽  
A. J. Voogt ◽  
B. Buchner

This work aims at characterizing the probability of wave impact and determining the position of impact on an FPSO (floating production storage and offloading platform) bow geometry. In order to determine the instants when impact occurs, an experimental program was performed on a specific bow shape. The bow was instrumented with pressure transducers and the test program, also making use of video recordings, was designed such that it was possible to determine the correlation between undisturbed wave shape and the impact pressure time traces. It has been found that the wave impact at the bow is highly correlated with the local wave steepness, which for very high waves has at least second-order effects. A comparison between the probability distributions of local wave steepness of the experimental undisturbed wave time trace and numerical simulations of second-order wave theory is provided and it confirmed that the latter is very adequate for calculations. The experimental results were further used to determine how the probability of impact varies with free surface vertical velocity. It was found that the significant wave height of the sea state itself does not have significant influence on the result and a regression model was derived for the bow type in the experiments. The proposed model for determining the probability of having an impact is based on combining distributions, adjusted a priori to the numerically generated second-order free surface vertical velocity, and the experimental probability of impact of a known certain seastate and free surface velocity. The analytical description makes it fast and easy to expand to other cases of interest and some example calculations are shown to demonstrate the relative ease of the procedure proposed. The position of the impact is determined by the nonlinear wave crests and the ship motions. The ship motions can be determined based on a linear response to the nonlinear waves considered.

Author(s):  
C. Guedes Soares ◽  
R. Pascoal ◽  
E. M. Anta˜o ◽  
A. J. Voogt ◽  
B. Buchner

This work aims at characterizing the probability of wave impact and expected impact load on the bow geometry of an FPSO. In order to determine the instants when impact occurs, an experimental program was performed on a specific bow shape. The bow was instrumented with pressure transducers and the test program, also making use of video recordings, was designed such that it was possible to determine the correlation between undisturbed wave shape and the impact pressure time traces. It has been found that wave impact at the bow is highly correlated with the local wave steepness, which for very high waves has at least second order effects. A comparison between the probability distributions of local wave steepness of the experimental undisturbed wave time trace and numerical simulations of second order wave theory is provided and it confirmed that the latter is very adequate for calculations. The experimental results were further used to determine how the probability of impact varies with free surface vertical velocity. It was found that the significant wave height of the sea state itself does not have significant influence on the result and a regression model is derived for that type of bow. The proposed model for determining the probability of impact load is based on combining both models. The analytical nature makes it fast and easy to expand to other cases of interest and some example calculations are shown to demonstrate the relative ease of the procedure proposed. The position of the impact is determined by the non-linear wave crests and the ship motions. The ship motions can be determined based on a linear response to the non-linear waves considered.


Author(s):  
Mathias Klahn ◽  
Per A. Madsen ◽  
David R. Fuhrman

This paper presents an investigation and discussion of the accuracy and applicability of an implicit Taylor (IT) method versus the classical higher-order spectral (HOS) method when used to simulate two-dimensional regular waves. This comparison is relevant, because the HOS method is in fact an explicit perturbation solution of the IT formulation. First, we consider the Dirichlet–Neumann problem of determining the vertical velocity at the free surface given the surface elevation and the surface potential. For this problem, we conclude that the IT method is significantly more accurate than the HOS method when using the same truncation order, M , and spatial resolution, N , and is capable of dealing with steeper waves than the HOS method. Second, we focus on the problem of integrating the two methods in time. In this connection, it turns out that the IT method is less robust than the HOS method for similar truncation orders. We conclude that the IT method should be restricted to M  = 4, while the HOS method can be used with M  ≤ 8. We systematically compare these two options and finally establish the best achievable accuracy of the two methods as a function of the wave steepness and the water depth.


Author(s):  
Zhigang Tian

Wave impact on offshore structures has been the focus of several studies, due to its significant effect on offshore operations. We evaluate several parameters (wave impact indicators) which can be adopted to indicate the possibility of wave impact on offshore structures due to extreme waves. The indicators can be estimated quickly with given sea states, and thus may provide useful information to offshore structure designers at early design phases. Definitions of three wave impact indicators are presented and discussed. The first indicator, Ψ, is proposed by Stansberg (2008). The second one considered is a wave breaking parameter, μ, originally presented by Song and Banner (2002) in their construction of a wave breaking criterion. Finally, we propose a more generalized impact indicator, βn. The subscript n indicates its dependence on local wave steepness. Our study demonstrates that the three indicators are analytically related. To evaluate these indicators numerically, 2nd order random surface waves are generated with random phase method and Two-Dimensional Fast Fourier Transform (2D FFT). Hilbert analysis of the wave signal reveals that all indicators are able to identify steep and energetic waves that may potentially cause large wave impact loads. Further numerical study demonstrates that the quantitative correlation of wave impact loads to μ is less promising than that to Ψ and βn; while βn provides the best relationship to both local wave impact load and global wave load with its dependence on local wave steepness adjusted (i.e. adjusting n). The correlation is independent of sea states. Estimations and recommendations for thresholds of the two impact indicators (i.e. Ψ and βn with n = 1) are made based on model test results. With proper estimation of the thresholds, both indicators can be applied to predict wave impact and wave impact probability in given sea states.


2017 ◽  
Vol 11 (01) ◽  
pp. 1740006 ◽  
Author(s):  
Changbo Jiang ◽  
Xiaojian Liu ◽  
Yu Yao ◽  
Bin Deng ◽  
Jie Chen

Seawall is a most commonly used structure in coastal areas to protect the landscape and coastal facilities. The studies of interactions between the tsunami-like solitary waves and the seawalls are relatively rare in the literature. In this study, a three-dimensional numerical model based on OpenFOAM® was developed to investigate the tsunami-like solitary waves propagating over a rectangular seawall. The Navier–Stokes equations for two-phase incompressible flow, combining with methods of [Formula: see text] for turbulence closure and Volume of Fluid (VOF) for tracking the free surface, were solved. Laboratory experiments were performed to measure some of the hydrodynamic feature associated with solitary waves. The model was then validated by the laboratory data, and good agreements were found for free surface, velocity and dynamic pressure around the seawall. Finally, a series of numerical experiments were conducted to analyze the evolution of both wave and flow fields, the overtopping discharge as well as wave pressure (force) around the seawall, special attention is given to the effects of seawall crest width. Our findings will help to improve the understanding in the occurrences of tsunami-induced damages in the vicinity of seawall such as wave impact and local scouring.


2006 ◽  
Vol 128 (2) ◽  
pp. 89-99 ◽  
Author(s):  
J. Zang ◽  
R. Gibson ◽  
P. H. Taylor ◽  
R. Eatock Taylor ◽  
C. Swan

The objective of this research, part of the EU FP5 REBASDO Program, is to examine the effects of second order wave diffraction in wave run-up around the bow of a vessel (FPSO) in random seas. In this work, the nonlinear wave scattering problem is solved by employing a quadratic boundary element method. A computer program, DIFFRACT, has been developed and recently extended to deal with unidirectional and directional bichromatic input wave systems, calculating second order wave diffraction loads and free surface elevation under regular waves and focused wave groups. The second order wave interaction with a vessel in a unidirectional focused wave group is presented in this paper. Comparison of numerical results and experimental measurements conducted at Imperial College shows excellent agreement. The second order free surface components at the bow of the ship are very significant, and cannot be neglected if one requires accurate prediction of the wave-structure interaction; otherwise a major underestimation of the wave impact on the structure could occur.


2013 ◽  
Vol 724 ◽  
pp. 123-153 ◽  
Author(s):  
M. Reinhard ◽  
A. A. Korobkin ◽  
M. J. Cooker

AbstractThe two-dimensional problem of an elastic-plate impact onto an undisturbed surface of water of infinite depth is analysed. The plate is forced to move with a constant horizontal velocity component which is much larger than the vertical velocity component of penetration. The small angle of attack of the plate and its vertical velocity vary in time, and are determined as part of the solution, together with the elastic deflection of the plate and the hydrodynamic loads within the potential flow theory. The boundary conditions on the free surface and on the wetted part of the plate are linearized and imposed on the initial equilibrium position of the liquid surface. The wetted part of the plate depends on the plate motion and its elastic deflection. To determine the length of the wetted part we assume that the spray jet in front of the advancing plate is negligible. A smooth separation of the free-surface flow from the trailing edge is imposed. The wake behind the moving body is included in the model. The plate deflection is governed by Euler’s beam equation, subject to free–free boundary conditions. Four different regimes of plate motion are distinguished depending on the impact conditions: (a) the plate becomes fully wetted; (b) the leading edge of the plate touches the water surface and traps an air cavity; (c) the free surface at the forward contact point starts to separate from the plate; (d) the plate exits the water. We could not detect any impact conditions which lead to steady planing of the free plate after the impact. It is shown that a large part of the total energy in the fluid–plate interaction leaves the main bulk of the liquid with the spray jet. It is demonstrated that the flexibility of the plate may increase the hydrodynamic loads acting on it. The impact loads can cause large bending stresses, which may exceed the yield stress of the plate material. The elastic vibrations of the plate are shown to have a significant effect on the fluid flow in the wake.


Author(s):  
Erik Jan de Ridder ◽  
Tim Bunnik ◽  
Johan M. Peeringa ◽  
Bo Terp Paulsen ◽  
Christof Wehmeyer ◽  
...  

The objective of the Joint Industry Project Wave impact on Fixed foundations (WiFi JIP) was to increase the understanding of breaking and steep wave impact’s on fixed foundations of offshore wind turbines (OWT). The project was set-up as a Joint Industry Project (JIP) and in total 20 companies and research institutes participated in the project. In this paper a summary of the complete WiFi JIP project will be presented. At the start of the project the state of the art design methods and guidelines were reviewed (WP1). Thereafter a jacket and a monopile foundation were designed using these state-of-the-art tools that were available at the start of the project. This effort has been reported in WP2 , where design computations were carried out using the embedded stream function approach for several sea states. In this WP Siemens, ECN and Ramboll also calculated the impact response of the monopile to surging and spilling type wave breakers with their engineering tools. In the next phase the designed foundations were tested in MARIN’s shallow water model basin. The foundation for the monopile was modelled as a rigid and flexible foundation. The foundations were tested in regular waves, irregular sea states and so called focused waves. During the model tests the wave heights, wave run-up, accelerations, impact pressures and loads on the foundation and boat landing were measured. The model test results were reported in WP3 and 7 and used as validation for WP9 and 10. WP4 delivered more understanding of realistic design conditions for areas typical for OWT, like the North Sea. Particular attention was paid to the probability of occurrence of breaking and steep waves and the associated slamming load. For this an extensive 5 week experimental program was performed from September to October 2013 in the wide wave-current flume at Deltares (Atlantic Basin). During these tests both waves and current were simulated and two bathymetries. WP8 provided analyses of the performed full scale measurements on the response of a OWT. The full-scale measurements were done for a Vestas V90 3MW wind turbine in the Belwind windfarm which is located 46 km off the coast of Zeebrugge on the Bligh Bank. The CFD simulations performed in WP 9 showed that a good agreement is obtained between the CFD simulations and the model and full scale measurement. In work package 10, an improved methodology was developed based on the outcome of the previous WP’s to model the breaking wave impact of plunging type breakers. In WP11 and 12 this new approach is applied on different case study’s by ECN.


Author(s):  
J. H. Kyoung ◽  
J. W. Kim ◽  
K. J. Bai

Wave impact load occurring in a liquid storage tank during a sloshing motion is numerically simulated. Due to a violent sloshing, an excessive impact load can cause a critical damage to the tank structure. Recently this type of the accidents are reported and the problem becomes an important research topic in LNG (Liquefied Natural Gas) Tanker and FPSO (Floating Production Storage Offloading) design. To predict the sloshing impact load, Morison’s formula could be used for a practical reason. But using the Morison formula may provide directly an inaccurate estimation for the impact load because this formula is based on the linear model in the present nonlinear dominating phenomena. In this study, the wave impact load on the structure is obtained by imposing the exact nonlinear free surface conditions numerically and compared with that predicted by Morison’s formula. As a numerical method, a three-dimensional free surface flow in a tank is formulated in the scope of potential flow theory with the nonlinear free-surface conditions. A finite-element method based on Hamilton’s principle is employed as a numerical scheme. The problem is treated as an initial-value problem. The nonlinear problem is numerically solved through an iterative method at each time step.


1989 ◽  
Vol 200 ◽  
pp. 235-264 ◽  
Author(s):  
Moo-Hyun Kim ◽  
Dick K. P. Yue

We study the diffraction, to second order, of plane monochromatic incident gravity waves by a vertically axisymmetric body. The second-order double-frequency diffraction potential is obtained explicitly. A sequence of one-dimensional integral equations along the generator of the body involving free-surface ring sources of general order are formulated and solved for the circumferential components of the second-order potential. The solution is expedited by analytic integration in the entire local-wave-free outer field of a requisite free-surface integral. The method is validated by extensive convergence tests and comparisons to semi-analytic results for the second-order forces and moments on a uniform vertical circular cylinder. Complete second-order forces, moments, surface pressures and run-up on the vertical cylinder as well as a truncated vertical cone are presented. A summary of the important findings is given in §5.


Author(s):  
Chittiappa Muthanna ◽  
Carl Trygve Stansberg ◽  
Rolf Baarholm ◽  
Astrid Harendza ◽  
Mia Priscic

The velocity field in the wave crest zone during wave impact phenomena was successfully measured using a 2 component PIV technique with a simplified two dimensional box model in a wave tank. Measurements were made for two different regular wave conditions and of the undisturbed wave field for the two wave conditions in order to study the influence of the modeled platform deck. The measurements of the wave velocity field showed that for the higher amplitude wave condition, vertical velocity components were amplified in the wave run up region, and away from this region, were not as heavily influenced as the horizontal velocity component. For the smaller wave amplitude vertical velocity components were reduced slightly, whereas the horizontal velocity components did not seem to be influenced. The measurements showed that the PIV technique is a practical and feasible tool in which to study and measure the wave velocity field, but it does come with some limitations.


Sign in / Sign up

Export Citation Format

Share Document