Out-of-Plane Displacement Derivative Measurements Using Interferometric Strain/Slope Gage

1996 ◽  
Vol 63 (4) ◽  
pp. 1033-1038 ◽  
Author(s):  
Keyu Li

An optical method originally developed for measuring derivatives of in-plane displacements is redefined to measure derivatives of out-of-plane displacements. The technique is based on interference of laser beams reflected and diffracted from two microindentations closely depressed on a specimen surface. As in-plane and out-of-plane displacements cause the microindentations to move relatively to each other, the two interference fringe patterns change accordingly. Movement of the interference fringes is monitored with linear photodiode arrays and analyzed via a computer-controlled system that allows simultaneous measurements of the in-plane and out-of-plane displacement derivatives. The technique is referred to as the interferometric strain/slope gage (ISSG). Having short gage length (˜100 μm), the technique is unique for measurements of high deformation gradients and for applications in complex geometries. Its principle as well as an experimental validation of measuring bending strains/stresses and deflection slopes in a cantilever beam is presented. The experiment shows that both the first-order and second-order derivatives of out-of-plane displacements can be obtained. Measurement sensitivities to in-plane and out-of-plane rigid-body motions are systematically investigated. The technique can be potentially extended to measure large deflection angles. The derived governing equations indicate a coupling effect between the in-plane and out-of-plane components. The associated instrumentation for data acquisition and analysis is described in great detail.

Author(s):  
Keyu Li

Abstract An interferometric strain measurement technique is extended to vibration measurements. The technique is based on two micro-indentations placed on an object surface using a combination of diffraction and interference of laser light. Relative displacements between the two indentations and derivatives of in-plane and out-of-plane vibrational displacements are measured by analyzing the phase shift of the interference fringe patterns. The technique can be used to study bending stress and deflection problems in vibrational beams, plates and shells. The displacement derivatives are measured in real time, from which time derivatives or the velocity and acceleration of the displacement derivative as well as vibrational frequency can be determined. The technique has advantages over an accelerometer in that it is noncontacting and does not require attachment of the transducer to the object which could alter the object behavior. In addition, it has many desirable features such as being extremely compact, massless, and applicable to hostile environments such as those associated with production and elevated temperatures.


2000 ◽  
Vol 123 (2) ◽  
pp. 276-280 ◽  
Author(s):  
Chi-Hung Huang ◽  
Chien-Ching Ma

Most of the published literature for vibration mode shapes of plates is concerned with analytical and numerical results. There are only very few experimental results available for the full field configuration of mode shapes for vibrating plates. In this study, an optical system called the AF-ESPI method with the out-of-plane displacement measurement is employed to investigate experimentally the vibration behavior of square isotropic plates with different boundary conditions. The edges of the plates may either be clamped or free. As compared with the film recording and optical reconstruction procedures used for holographic interferometry, the interferometric fringes of AF-ESPI are produced instantly by a video recording system. Based on the fact that clear fringe patterns will appear only at resonant frequencies, both resonant frequencies and corresponding mode shapes can be obtained experimentally at the same time by the proposed AF-ESPI method. Excellent quality of the interferometric fringe patterns for the mode shapes is demonstrated.


2021 ◽  
pp. 1-32
Author(s):  
Xinpeng Tian ◽  
Mengkang Xu ◽  
Haiyang Zhou ◽  
Qian Deng ◽  
Qun Li ◽  
...  

Abstract Due to the stress concentration near crack tips, strong flexoelectric effect would be observed there, which might lead to new applications of flexoelectricity in material science and devices. However, different from the flexoelectric effect in cantilever beams or truncated pyramids, at the crack tip, multiple components of strain gradients with nonuniform distribution contribute to the flexoelectric effect, which makes the problem extremely complex. In this paper, with the consideration of both direct and converse flexoelectricity, the electromechanical coupling effect around the tip of a Mode III crack is studied analytically. Based on the Williams' expansion method, the displacement field, polarization field, strain gradient field along with the actual physical stresses field are solved. A path independent J-integral for Mode III cracks in flexoelectric solids is presented. Our results indicate that the existence of flexoelectricity leads to a decrease of both the J-integral and the out-of-plane displacement in Mode III cracks, which means that the flexoelectric effect around the tip of Mode III cracks enhances the local strength of materials.


2011 ◽  
Vol 228-229 ◽  
pp. 526-531
Author(s):  
Cai Xia You ◽  
Guang De Zhang

This paper describes the basic concept of the new technique for the modeling of the structural-acoustic coupling between the pressure field in an acoustic cavity with arbitrary shape and the out-of-plane displacement of a flat plate with arbitrary shape. It is illustrated through a three-dimensional validation example that the new prediction technique yields a high accuracy. The effect of the cavity depth and the coupling interface area on the strength of mutual coupling interaction are discussed in detail.


2011 ◽  
Vol 70 ◽  
pp. 255-260
Author(s):  
Xiao Yuan He ◽  
Fei Peng Zhu ◽  
Cheng Fei Wang ◽  
Ying Jun Xu

The determination of dynamic characteristics of microelectromechanical system (MEMS) devices is of great importance. Currently, vibrometer techniques using a Laser-Doppler Vibrometer (LDV) are used for dynamic measurement of MEMS, utilizing an interferometer based on a stroboscope and high-speed cine photomicrography are used for MEMS. But, these methods can’t be used for 3D dynamic displacement measurement simultaneously because of their limitations. In this paper, an optical system for 3D dynamic displacement measurement of micro-components is presented using stroboscopic fringe projection and digital image correlation (DIC), which can measure both in-plane and out-of-plane motions simultaneously. In the system, stroboscopic fringe patterns are projected onto the surface of a vibrating specimen by a phase-shifting projector and stroboscopic illumination supplied with a pulsed laser diode. Synchronization between the stroboscopic laser and the driving signal for the specimen vibrating is achieved by the stroboscopic controller. For a certain vibration state, four deformed phase-shifting fringe patterns are captured by a high-resolution CMOS camera with a long working distance microscope. The images are processed by a phase-shifting technique to obtain the phase distribution. The surface pattern of the specimen without fringes could be obtained by certain phase-shifting algorithms. When stroboscopic pulses are delayed, the stroboscopic phase is changed and another vibrating status could be captured in the same way. Comparing the phase distributions of these two states, the out-of-plane displacement is achieved, which is the displacement of the specimen between these two states. The in-plane displacement could be obtained from the surface pattern without fringes by DIC. Adjusting the phase delay of illumination by stroboscopic controller, the motions of the specimen in the whole vibration period can be obtained.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4104
Author(s):  
Nassr Al-Baradoni ◽  
Peter Groche

In this paper we present a novel, cost-effective camera-based multi-axis force/torque sensor concept for integration into metallic load-bearing structures. A two-part pattern consisting of a directly incident and mirrored light beam is projected onto the imaging sensor surface. This allows the capturing of 3D displacements, occurring due to structure deformation under load in a single image. The displacement of defined features in size and position can be accurately analyzed and determined through digital image correlation (DIC). Validation on a prototype shows good accuracy of the measurement and a unique identification of all in- and out-of-plane displacement components under multiaxial load. Measurements show a maximum deviation related to the maximum measured values between 2.5% and 4.8% for uniaxial loads ( and between 2.5% and 10.43% for combined bending, torsion and axial load. In the course of the investigations, the measurement inaccuracy was partly attributed to the joint used between the sensor parts and the structure as well as to eccentric load.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Jungwon Huh ◽  
In-Tae Kim ◽  
Jin-Hee Ahn

The shear buckling failure and strength of a web panel stiffened by stiffeners with corrosion damage were examined according to the degree of corrosion of the stiffeners, using the finite element analysis method. For this purpose, a plate girder with a four-panel web girder stiffened by vertical and longitudinal stiffeners was selected, and its deformable behaviors and the principal stress distribution of the web panel at the shear buckling strength of the web were compared after their post-shear buckling behaviors, as well as their out-of-plane displacement, to evaluate the effect of the stiffener in the web panel on the shear buckling failure. Their critical shear buckling load and shear buckling strength were also examined. The FE analyses showed that their typical shear buckling failures were affected by the structural relationship between the web panel and each stiffener in the plate girder, to resist shear buckling of the web panel. Their critical shear buckling loads decreased from 82% to 59%, and their shear buckling strength decreased from 88% to 76%, due to the effect of corrosion of the stiffeners on their shear buckling behavior. Thus, especially in cases with over 40% corrosion damage of the vertical stiffener, they can have lower shear buckling strength than their design level.


2016 ◽  
Vol 83 (4) ◽  
Author(s):  
Youlong Chen ◽  
Yong Zhu ◽  
Xi Chen ◽  
Yilun Liu

In this work, the compressive buckling of a nanowire partially bonded to an elastomeric substrate is studied via finite-element method (FEM) simulations and experiments. The buckling profile of the nanowire can be divided into three regimes, i.e., the in-plane buckling, the disordered buckling in the out-of-plane direction, and the helical buckling, depending on the constraint density between the nanowire and the substrate. The selection of the buckling mode depends on the ratio d/h, where d is the distance between adjacent constraint points and h is the helical buckling spacing of a perfectly bonded nanowire. For d/h > 0.5, buckling is in-plane with wavelength λ = 2d. For 0.27 < d/h < 0.5, buckling is disordered with irregular out-of-plane displacement. While, for d/h < 0.27, buckling is helical and the buckling spacing gradually approaches to the theoretical value of a perfectly bonded nanowire. Generally, the in-plane buckling induces smaller strain in the nanowire, but consumes the largest space. Whereas the helical mode induces moderate strain in the nanowire, but takes the smallest space. The study may shed useful insights on the design and optimization of high-performance stretchable electronics and three-dimensional complex nanostructures.


Sign in / Sign up

Export Citation Format

Share Document