Modeling of Airflow in the Pharynx With Application to Sleep Apnea

1998 ◽  
Vol 120 (3) ◽  
pp. 416-422 ◽  
Author(s):  
B. Shome ◽  
L.-P. Wang ◽  
M. H. Santare ◽  
A. K. Prasad ◽  
A. Z. Szeri ◽  
...  

A three-dimensional numerical modeling of airflow in the human pharynx using an anatomically accurate model was conducted. The pharynx walls were assumed to be passive and rigid. The results showed that the pressure drop in the pharynx lies in the range 200-500 Pa. The onset of turbulence was found to increase the pressure drop by 40 percent. A wide range of pharynx geometries covering three sleep apnea treatment therapies (CPAP, mandibular repositioning devices, and surgery) were modeled and the resulting flow characteristics were investigated and compared. The results confirmed that the airflow in the pharynx lies in the laminar-to-turbulence transitional flow regime and thus, a subtle change in the morphology caused by these treatment therapies can significantly affect the airflow characteristics.

2021 ◽  
pp. 163-172
Author(s):  
Junxiang Gao ◽  
Xiaoliang Gao ◽  
Wei Zou

Taking the lubrication system of rotary tillage engine as the research object, this paper makes a three-dimensional simulation study on the oil flow characteristics in the lubricating oil passage. The oil supply of the oil pump shall be greater than the circulating oil required by the lubrication system to ensure the lubrication of the rotary cultivator. Lubrication system is an important part to ensure the reliability and durability of rotary cultivator. The key component to achieve its performance is the oil pump. The geometric model of lubricating oil flow field in rotary tiller lubrication system is established by using FLUENT software. The results show that the pressure drop in the lubricating oil passage of the main bearing is the largest under the same working conditions. In the oil passage of the cylinder head, the pressure drop of the front main oil passage is the largest and the oil discharge is the largest. Add 1.6mm oil pump rotor on the basis of the thickness of the original oil pump rotor, the oil flow at the connecting rod nozzle reaches the flow index of the original rotary cultivator, and there is no cylinder pulling phenomenon of the rotary cultivator.


Author(s):  
Chungpyo Hong ◽  
Toru Yamada ◽  
Yutaka Asako ◽  
Mohammad Faghri ◽  
Koichi Suzuki ◽  
...  

This paper presents experimental results on flow characteristics of laminar, transitional to turbulent gas flows through micro-channels. The experiments were performed for three micro-channels. The micro-channels were etched into silicon wafers, capped with glass, and their hydraulic diameter are 69.48, 99.36 and 147.76 μm. The pressure was measured at seven locations along the channel length to determine local values of Mach number and friction factor for a wide range of flow regime from laminar to turbulent flow. Flow characteristics in transitional flow regime to turbulence were obtained. The result shows that f·Re is a function of Mach number and higher than incompressible value due to the compressibility effect. The values of f·Re were compared with f·Re correlations in available literature.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Xidong Zhang ◽  
Hulin Huang ◽  
Yin Zhang ◽  
Hongyan Wang

The predictions of flow structure, vortex shedding, and drag force around a circular cylinder are promoted by both academic interest and a wide range of practical situations. To control the flow around a circular cylinder, a magnetic obstacle is set upstream of the circular cylinder in this study for active controlling the separated flow behind bluff obstacle. Moreover, the changing of position, size, and intensity of magnetic obstacle is easy. The governing parameters are the magnetic obstacle width (d/D = 0.0333, 0.1, and 0.333) selected on cylinder diameter, D, and position (L/D) ranging from 2 to 11.667 at fixed Reynolds number Rel (based on the half-height of the duct) of 300 and the relative magnetic effect given by the Hartmann number Ha of 52. Results are presented in terms of instantaneous contours of vorticity, streamlines, drag coefficient, Strouhal number, pressure drop penalty, and local and average Nusselt numbers for various magnetic obstacle widths and positions. The computed results show that there are two flow patterns, one with vortex shedding from the magnetic obstacle and one without vortex shedding. The optimum conditions for drag reduction are L/D = 2 and d/D = 0.0333–0.333, and under these conditions, the pressure drop penalty is acceptable. However, the maximum value of the mean Nusselt number of the downstream cylinder is about 93% of that for a single cylinder.


Author(s):  
Md. Readul Mahmud

The fluids inside passive micromixers are laminar in nature and mixing depends primarily on diffusion. Hence mixing efficiency is generally low, and requires a long channel length and longtime compare to active mixers. Various designs of complex channel structures with/without obstacles and three-dimensional geometries have been investigated in the past to obtain an efficient mixing in passive mixers. This work presents a design of a modified T mixer. To enhance the mixing performance, circular and hexagonal obstacles are introduced inside the modified T mixer. Numerical investigation on mixing and flow characteristics in microchannels is carried out using the computational fluid dynamics (CFD) software ANSYS 15. Mixing in the channels has been analyzed by using Navier–Stokes equations with water-water for a wide range of the Reynolds numbers from 1 to 500. The results show that the modified T mixer with circular obstacles has far better mixing performance than the modified T mixer without obstacles. The reason is that fluids' path length becomes longer due to the presence of obstacles which gives fluids more time to diffuse. For all cases, the modified T mixer with circular obstacle yields the best mixing efficiency (more than 60%) at all examined Reynolds numbers. It is also clear that efficiency increase with axial length. Efficiency can be simply improved by adding extra mixing units to provide adequate mixing. The value of the pressure drop is the lowest for the modified T mixer because there is no obstacle inside the channel. Modified T mixer and modified T mixer with circular obstacle have the lowest and highest mixing cost, respectively. Therefore, the current design of modified T with circular obstacles can act as an effective and simple passive mixing device for various micromixing applications.


Author(s):  
W. Shyy ◽  
T. C. Vu

Numerical modeling of the three-dimensional flows in a spiral casing of a hydraulic turbine, containing a passage of 360-degree turning and multiple elements of airfoils (the so-called distributor), is made. The physical model is based on a novel two-level approach, comprising of (1) a global model that adequately accounts for the geometry of the spiral casing but smears out the details of the distributor and represents the multiple airfoils by a porous medium treatment, and (2) a local model that performs detailed analysis of flow in the distributor region. The global analysis supplies the inlet flow condition for the individual cascade of distributor airfoils, while the distributor analysis yields the information needed for modeling the characteristics of the porous medium. Comparisons of pressure and velocity profiles between measurement and prediction have been made to assess the validity of the present approach. Flow characteristics in the spiral casing are also discussed.


2021 ◽  
Author(s):  
Aws A. Al-Akam ◽  
Theoklis Nikolaidis ◽  
David G. MacManus ◽  
Alvise Pellegrini

Abstract The use of a simulation tool to predict the aero-engine performance before committing to a final engine design has become one of the most cost-saving approaches in this field. However, most of these tools are based on low fidelity thermodynamic models, which are incapable of fully capturing the impact of three-dimensional flow characteristics. An aero-engine exhaust-system is one of the essential components that affect the engine performance. Currently, engine performance models tend to utilize simplified nozzle performance maps. These maps typically provide information over a very limited range of nozzle geometries, which may not apply to the wide range of architectures and designs of aeroengines. The current paper presents a methodology for the development of nozzle performance maps, which takes into account the aerodynamic and the geometric parameters of the nozzle design. The methodology is based on the reduced-order models. These models are integrated into a zero-dimensional engine performance code to improve the accuracy of its thrust calculation. The impact of the new thrust model on the overall engine performance and the operating point is analysed and discussed. The results showed that the implementation of the modified maps, which take into account the flow characteristics and the geometry of the nozzle, affects the thrust calculation. In a typical case of a turbofan operating at cruise conditions, the net thrust estimation with the modified nozzle maps showed a difference of 0.2%, compared with the simple nozzle maps. The new thrust calculation method has the advantage in capturing the multidimensional impact of the flow of the nozzle as compared with the conventional one. Furthermore, the implementation of the new method reduces the uncertainties introduced by a simplified nozzle model and, consequently, it can support the decision-making process in the design of the engine.


2011 ◽  
Vol 236-238 ◽  
pp. 1653-1657 ◽  
Author(s):  
Xiao Dong Wang ◽  
Jing Liang Dong ◽  
Tian Wang

A numerical approach was used to investigate the flow characteristics around a butterfly valve with the diameter of 2108 mm by the commercial computational fluid dynamics (CFD) code FLUENT6.3. The simulation was carried out to predict flow field structure, flow resistance coefficient, hydrodynamics torque and so on, when the large diameter butterfly valve operated at various opening degrees. The three-dimensional simulation results shown that there are vortexes presented near valve back region as the opening degree smaller than 40 degree; the flow resistance coefficient reduces rapidly with the increasing of opening degree and the resistance coefficient is quite small as the angle larger than 50 degree; the hydrodynamic torque reduces with the increasing of opening degree and the hydrodynamic torque is smaller than 20% of maximum torque; the torque ratio and the pressure drop ratio are reduce with the increasing of opening degree, the pressure drop ratio reduces rapidly as the opening degree is smaller than 50 degree.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3153
Author(s):  
Huizhu Yang ◽  
Yongyao Li ◽  
Binjian Ma ◽  
Yonggang Zhu

Due to their high porosity, high stiffness, light weight, large surface area-to-volume ratio, and excellent thermal properties, open-cell metal foams have been applied in a wide range of sectors and industries, including the energy, transportation, aviation, biomedical, and defense industries. Understanding the flow characteristics and pressure drop of the fluid flow in open-cell metal foams is critical for applying such materials in these scenarios. However, the state-of-the-art pressure drop correlations for open-cell foams show large deviations from experimental data. In this paper, the fundamental governing equations of fluid flow through open-cell metal foams and the determination of different foam geometry structures are first presented. A variety of published models for predicting the pressure drop through open-cell metal foams are then summarized and validated against experimental data. Finally, two empirical correlations of permeability are developed and recommended based on the model of Calmidi. Moreover, Calmidi’s model is proposed to calculate the Forchheimer coefficient. These three equations together allow calculating the pressure drop through open-cell metal foam as a function of porosity and pore diameter (or strut diameter) in a wide range of porosities ε = 85.7–97.8% and pore densities of 10–100 PPI. The findings of this study greatly advance our understanding of the flow characteristics through open-cell metal foam and provide important guidance for the design of open-cell metal foam materials for different engineering applications.


2015 ◽  
Vol 37 (2) ◽  
pp. 20-31
Author(s):  
V. G. Novikov

Presented the results of numerical modeling of transport processes in the interaction of wind flow in the surface layer of the atmosphere with the buildings and structures located within the compact urban development. In the target area calculated three-dimensional velocity field of wind power density of the wind flow and turbulence characteristics in order to determine the most appropriate places of location of wind power installations for power supply pilot house passive type.  


Sign in / Sign up

Export Citation Format

Share Document