A Comparison Study on the Performance of Four Types of Oil Lubricated Hydrodynamic Thrust Bearings for Hard Disk Spindles

1999 ◽  
Vol 121 (1) ◽  
pp. 114-120 ◽  
Author(s):  
Jiasheng Zhu ◽  
Kyosuke Ono

In this paper, the static and dynamic performance of herringbone, step-pocket, taper-pocket, and taper-flat thrust bearings were numerically analyzed. Optimal values for the design parameters of each type of bearing were analyzed in terms of both maximum axial stiffness (kzz) and maximum ratio of axial stiffness to friction torque (kzz/T) and bearing performance for both cases was calculated. The optimal performance characteristics of these bearings were compared in terms of application to hard disk spindles. Step-pocket and taper-pocket thrust bearings are superior to herringbone and taper-flat thrust bearings with respect to both the maximum kkk and the maximum kzz/T conditions. It was found that the dams of thrust bearings with pockets play an important part in improving the hearing performance. It was made clear that the taper-pocket and the taper-flat thrust bearings have a much larger load capacity than the other two types of thrust bearings in the proximity of zero clearance.

Author(s):  
Gen Fu ◽  
Alexandrina Untaroiu

Contact performance can be enhanced by using textured surfaces. These are also found to have influences on lubricated contacts. The effects of textured surface on lubricated contacts has been widely investigated over the past twenty years. The property of lubricated contacts has been found to play an important role on the performance of fluid film bearings. According to the previous study, the introduction of dimples on the inner surfaces of parallel thrust bearings can improve the load capacity and reduce the friction. Since the friction loss is mostly converted to thermal energy and then increase the temperature, textured surface is expected to have a positive effect on the thermal property of the thrust bearings. A procedure to find the optimal partially texture geometry, which minimize the temperature inside the bearing film, is presented in this study. A parallel sector-pad thrust bearing is simulated by a 3D computational fluid dynamics model. The stationary surface of the bearing is textured with dimples while the rotor surface is flat. The results of the baseline model have been validated by the experimental data from the literature. The temperature and pressure distribution on the bearing pad are presented. In this study, two types of dimples, including rectangular and elliptical, are compared together. A parametric study is conducted to investigate the influence of the texture geometries. In this study, the length of the major axis (width), the length of the minor axis (length), dimple depth, circumferential space between two dimples, radial space between two dimples, radial extend and circumferential extend are selected as design parameters. A surrogate model is used to reduce the computing time of CFD analysis. Based on the surrogate model, a multi-objective optimization scheme is used to navigate the design space and find the optimal texture structure that provides a lower maximal temperature inside the fluid film, higher load capacity, and lower friction torque. The optimal radial extent of the texture is around 80% of the pad radial length for both cases. The optimal length of the elliptical dimples in the circumferential direction is about 30% larger than the value of the rectangular dimples. In the final optimal design, the maximal temperature reduces 1.1% and 1.3% for rectangular and elliptical dimples while the load capacities are maintained at the same level.


Author(s):  
Hailong Cui ◽  
Yang Wang ◽  
Xiaobin Yue ◽  
Yifei Li ◽  
Zhengyi Jiang

This study utilizes a dynamic mesh technology to investigate the dynamic performance of aerostatic thrust bearings with orifice restrictor, multiple restrictors, and porous restrictor. An experiment, which investigates the bearing static load capacity, was carried out to verify the calculation accuracy of dynamic mesh technology. Further, the impact of incentive amplitude, incentive frequency, axial eccentricity ratio, and non-flatness on the bearing dynamic performance was also studied. The results show incentive amplitude effect can be ignored at the condition of amplitude less than 5% film thickness, while the relationship between dynamic characteristics and incentive frequency presented a strong nonlinear relationship in the whole frequency range. The change law of dynamic stiffness and damping coefficient for porous restrictor was quite different from orifice restrictor and multiple restrictors. The bearing dynamic performance increased significantly with the growth of axial eccentricity ratio, and the surface non-flatness enhanced dynamic performance of aerostatic thrust bearings.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hongyang Hu ◽  
Ming Feng ◽  
Tianming Ren

Purpose The purpose of this paper is to study the characteristics of gas foil conical bearings (GFCBs) considering the misalignment, the static and dynamic performances with different misalignment cases were studied. Design/methodology/approach A test rig on the air compressor supported by GFCBs has been developed to measure the practicability. A nonlinear bump stiffness model and one-dimensional beam top foil stiffness model were used as a basis for the calculation of static and dynamic performance. The finite element method and finite difference method are adopted to solve the Reynolds equation and the film thickness equation coupled, in which different misalignment cases were considered by changing the film thickness. Findings The supporting performance of GFCB is excellent, and the film clearance plays a critical role. The misalignment effects depend on the assembled angle and the misalignment angle. The load capacity, friction torque, temperature of GFCB decrease when the misalignment assembled angle is between 120° and 240°, while the dynamic bearing stability is improved. The static and dynamic performances show the opposite law for the other assembled angles, and the misalignment effect is more dramatic when there is a larger misalignment angle. Moreover, the bearing and running parameters largely affect the bearing performance. Originality/value The present study focuses on the static and dynamic characteristics of GFCB and investigates the effects of misalignment on the bearing performance. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2020-0117


Author(s):  
K C Singh ◽  
N S Rao ◽  
B C Majumdar

A theoretical analysis is presented to predict the static axial performance characteristics of a porous circular thrust bearing with a central hole for both open and sealed ends, taking into consideration the tilt of the runner pad. The flow in the bearing matrix is considered to be three-dimensional. The governing equations of gas flow through the porous pad and the bearing clearance are solved simultaneously using the finite difference technique to obtain pressure distribution in the bearing clearance. The load capacity, mass rate of flow and static axial stiffness are calculated numerically for various bearing dimensions and supply conditions and presented in graphical form. The bearings with sealed ends have comparatively better load capacity over those with unsealed ends. The effect of tilt is to decrease the load capacity and increase the mass flowrate.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Gen Fu ◽  
Alexandrina Untaroiu

Contact performance can be enhanced by using textured surfaces. These are also found to have influences on lubricated contacts. A procedure to find the optimal partially textured thrust bearing configuration is presented in this study. A parallel sector-pad thrust bearing is simulated by a three-dimensional (3D) computational fluid dynamics (CFD) model. The stationary surface of the bearing is textured with dimples, while the rotor surface is flat. The results of the baseline model are validated by experimental data. In this study, we compare rectangular and elliptical dimples by investigating design parameters, such as major the length of the major axis (width), the length of the minor axis (length), dimple depth, circumferential space between two dimples, radial space between two dimples, radial extent, circumferential extent are selected as design parameters. A parametric study is conducted to investigate the influence of the texture geometries and a surrogate model is created. Based on the surrogate model, a multi-objective optimization scheme is used to navigate the design space and find the optimal texture structure that provides a lower maximal temperature inside the fluid film, higher load capacity, and lower friction torque. The results show that the optimal radial extent of the texture is around 80% of the pad radial length for both cases. The optimal length of the elliptical dimples in the circumferential direction is about 30% larger than the value of the rectangular dimples. In the final optimal design, the maximal temperature reduces 1.1% and 1.3% for rectangular and elliptical dimples while the load capacities are maintained at the same level.


2011 ◽  
Vol 48-49 ◽  
pp. 118-122
Author(s):  
Fu Qiang Ying ◽  
Yi Wang ◽  
Ling Dong Wu ◽  
Liang Yi Li

With the optimization design method of FE,the FE model of vertical flange lathe beam of double-tool holder was established,the sensitivity analysis of dynamic performance for the machine tool was performed based on presented modal analysis and probability analysis.The influence rules of the first four natural frequencies affected by the design parameters of the lathe beam were confirmed and the weaknesses of it were indicated as well.Then, the structure of the lathe beam was optimized.As a result ,the dynamic performances of the lathe beam are improved and it offers the basis for the optimization design of the other lathe parts.


Author(s):  
Gen Fu ◽  
Alexandrina Untaroiu

Textured thrust bearings are capable of providing higher load capacity and lower friction torque compared to nontextured bearings. However, most previous optimization efforts for texturing geometry were focused on rectangular dimples and employed Reynolds equation. Limited studies have been done to investigate the effects of partially textured thrust bearings with elliptical dimples. This study proposes a new optimization approach to find the optimal partially texture geometry with elliptical dimples, which maximize the loading capacity and minimize the friction torque. In this study, a 3D computational fluid dynamics (CFD) model for a parallel sector-pad thrust bearing is built using ANSYS cfx. Mass conserving cavitation model is used to simulate the cavitation regions. Energy equation for Newtonian flow is also solved. The results of the model are validated by the experimental data from the literature. Based on this model, the flow pattern and pressure distribution inside the dimples are analyzed. The geometry of elliptical dimple is parameterized and analyzed using design of experiments (DOE). The selected geometry parameters include the length of major and minor axes, dimple depth, radial and circumferential space between two dimples, and the radial and circumferential extend. A multi-objective optimization scheme is used to find the optimal texture structure with the load force and friction torque set as objective functions. The results show that the shape of dimples has a crucial effect on the performance of the textured thrust bearings. Searching the design space for a proper combination among the design variables satisfying the constraints has the advantage of capturing the codependence among design variables and leads to a surface patterning of the bearing, which showed a 42.7% improvement on the load capacity.


1983 ◽  
Vol 105 (3) ◽  
pp. 476-483 ◽  
Author(s):  
W. Shapiro ◽  
R. Graham ◽  
G. Anderson

The concept of a fluid-equalized, tilting-pad thrust bearing is presented. Load augmentation is introduced by external pressurization through the pad pivots. Performance characteristics were obtained for two different external hybrid supply systems. One system is completely independent of the equalizing system; the other utilizes a common supply and equalization system with separate control pads fixed to the support structure. The bearing retains (and may improve upon) the advantages of equalization and alignment inherent in hydrodynamic tilting-pad, leveling-link thrust bearings and permits significantly added load capacity.


Lubricants ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 57 ◽  
Author(s):  
Vladimir Kodnyanko ◽  
Stanislav Shatokhin ◽  
Andrey Kurzakov ◽  
Yuri Pikalov

As aerostatic bearings are used in high-speed metal-cutting machines to increase machining accuracy, there is the need to improve their characteristics, including compliance, which is usually high. In practical applications, a significant reduction of bearing compliance is often necessary, sometimes down to zero and even negative values, to ensure automatic compensation of the elastic deformation in the machine technological system. A decrease in compliance leads to deterioration in the dynamic performance of the bearing, so it is necessary to develop new designs that meet the above requirements. This article considers an aerostatic bearing, in which decrease in compliance is ensured by the use of air throttling with elastic orifices. To ensure its stability, the principle of combined external throttling was applied, which can substantially improve the dynamics of conventional aerostatic bearings. A mathematical model of the elastic orifice deformation was developed, together with the flow rate performance calculation method. The method ensured full qualitative and satisfactory quantitative agreement with the experimental data. The model was used in the mathematical modeling of the aerostatic bearing movement. The article also proposes a method to calculate the static load capacity and compliance of a bearing, as well as a numerical method for fast computation of its dynamic performance, which allows for real-time multi-parameter optimization by the bearing dynamic performance criteria. The study showed that there is an optimal set of design parameters for which low, zero, and negative static compliance of the bearing is ensured, with the necessary stability margin, high speed, and the non-oscillatory nature of the transient processes.


Sign in / Sign up

Export Citation Format

Share Document