The Influence of Semi-Empirical Control Valve Model Parameter Accuracy on Simulated Hydraulic System Responses

1992 ◽  
Vol 114 (4) ◽  
pp. 707-713 ◽  
Author(s):  
H. Handroos ◽  
M. Vilenius

A parameter sensitivity analysis method is applied to an investigation of the importance of the identification accuracy of the parameter values describing the steady-state and dynamic behavior of three commonly used fluid power circuit components, i.e., single-stage pressure relief, reducing, and two-way flow control valves. The component models are verified; these semi-empirical models take into account the most important continuous and discontinuous nonlinearities.

2005 ◽  
Vol 15 (02) ◽  
pp. 459-476
Author(s):  
C. PATRICK YUE ◽  
JAEJIN PARK ◽  
RUIFENG SUN ◽  
L. RICK CARLEY ◽  
FRANK O'MAHONY

This paper presents the low-power circuit techniques suitable for high-speed digital parallel interfaces each operating at over 10 Gbps. One potential application for such high-performance I/Os is the interface between the channel IC and the magnetic read head in future compact hard disk systems. First, a crosstalk cancellation technique using a novel data encoding scheme is introduced to suppress electromagnetic interference (EMI) generated by the adjacent parallel I/Os . This technique is implemented utilizing a novel 8-4-PAM signaling with a data look-ahead algorithm. The key circuit components in the high-speed interface transceiver including the receive sampler, the phase interpolator, and the transmitter output driver are described in detail. Designed in a 0.13-μm digital CMOS process, the transceiver consumes 310 mW per 10-Gps channel from a I-V supply based on simulation results. Next, a 20-Gbps continuous-time adaptive passive equalizer utilizing on-chip lumped RLC components is described. Passive equalizers offer the advantages of higher bandwidth and lower power consumption compared with conventional designs using active filter. A low-power, continuous-time servo loop is designed to automatically adjust the equalizer frequency response for the optimal gain compensation. The equalizer not only adapts to different channel characteristics, but also accommodates temperature and process variations. Implemented in a 0.25-μm, 1P6M BiCMOS process, the equalizer can compensate up to 20 dB of loss at 10 GHz while only consumes 32 mW from a 2.5-V supply.


2012 ◽  
Vol 468-471 ◽  
pp. 1266-1269
Author(s):  
Yan Jun Zhang ◽  
Zi Ming Kou ◽  
Gui Jun Gao ◽  
Jun Zhang

Abstract. To improve the automation degree in special working environment which contains explosive gas. We develop a new type of temperature control hydraulic sensor basically on theory and lots of experiments. As the temperature reaches about 85°C,the motion part of the inductor will stretch to a certain length, and then it will push the adjusting rod. Simultaneously,the adjusting rod will overcome the elastic force of the spring and compel the spool valve to deform, and finally the control valve port will be open, it allows the control oil of the hydraulic system to pass. At last it reaches our destination that we can make the control of hydraulic circuit be realized.


2014 ◽  
Vol 630 ◽  
pp. 375-382 ◽  
Author(s):  
Daniel Himr ◽  
Vladimir Haban

A pumping station in a fuel storage suffered from pressure pulsations in a petrodiesel pipeline. Check valves protecting the station against back flow made a big noise when disc hit a seat. Due to employees complaints we were asked to solve the problem, which could lead to serious mechanical problems. Pressure measurement in the pipeline showed great pulsations, which were caused by self-excited oscillation of control valves at the downstream end of pipeline. The operating measurement did not catch it because of too low sampling frequency. One dimensional numerical model of the whole hydraulic system was carried out. The model consisted of check valve, pipeline and control valve, which could oscillate, so it was possible to simulate the unsteady flow. When the model was validated, a vessel with nitrogen was added to attenuate pressure pulsations. According to the results of numerical simulation, the vessel was installed on the location. Subsequent measurement proved noticeably lower pulsations and almost no noise.


2016 ◽  
Vol 114 ◽  
pp. 02008 ◽  
Author(s):  
Adam Bureček ◽  
Lumír Hružík ◽  
Martin Vašina

2011 ◽  
Vol 341-342 ◽  
pp. 452-455
Author(s):  
Liang Yuan Shen ◽  
Hong Guang Wang ◽  
Rui Jun Zhang ◽  
Peng Peng Liu

The usual hydraulic pump station pumps the general use of quantitative supply voltage level or constant pressure, using the corresponding control valve speed to adapt to work requirements, when the hydraulic system is intermittent or low-load condition, a large number of high-pressure oil through regulator overflow Back to the tank overflow valve, causing a great deal of energy consumption, when the hydraulic system requires a large flow of oil, it will result in a short time for the fluid system for liquid inadequate and under-voltage phenomenon. To solve this problem, we propose to improve the program, and conducted the analysis and comparison of several options to determine the source of energy-saving adaptive overall scheme of oil, its reasonable design, implementation of the automatic adaptive functioning, energy loss Small, the effect is significant.


Author(s):  
Randall M. Attix ◽  
D. M. Chamberlin

Reactive power is an unwanted but unavoidable part of alternating current electric power delivery systems. Governed by the laws of physics, it occurs due to the inherent nature of the components of these systems. This article develops an understanding of reactive power and the control of it to reduce its adverse effects and to improve the efficiency of an electric power delivery system. The article begins by identifying and representing electric power circuit components, real power, and reactive power. These are then mathematically shown how they interact and affect the power delivery system. Control and mitigation of the effects of reactive power are then developed with emphasis on mechanical solutions using rotating machines. In particular, peaking or retired generators are identified for use as rotating condensers as well as new installations. A description of the gear type synchronous self-synchronizing (SSS) overrunning clutches used to connect and dis-connect a generator from the peaking prime mover or the retired generator from a starting system is included.


2014 ◽  
Vol 635-637 ◽  
pp. 181-184
Author(s):  
Li Ming Cai

Main control valve is the key component of the hydraulic system, the valve value accounts for about 30% of machinery hydraulic system. The regenerative repair of main control valve was completed by adopting grinding, electroplating and other relatively simple process. So, process is easy to operation and implementation, the maintenance cost and waste of resources is decreased, and repair effect is good. The service life of main control valve regenerated by using this technology can reach or exceed the service life of new one.


2012 ◽  
Vol 510 ◽  
pp. 34-38
Author(s):  
Yun Li ◽  
Jin Wei Fan ◽  
Xing Li Gao ◽  
Xiao Feng Wang

According to the problems of hydraulic system of sway machine, such as commissioning and maintenance are inconvenient, impact of change direction is big, system speed is slow, production efficiency is low, etc. It used electro-hydraulic proportional control valve to improve design in hydraulic system of sway machine. Application of electro-hydraulic proportional control valve has realized automatic adjustment of the hydraulic motor speed; it is effective to solve variable speed movement of sway machine frame and no impact of changing direction smooth. Commissioning and maintenance of sway machine are more convenient, and it improves performance of sway machine.


2014 ◽  
Vol 548-549 ◽  
pp. 1023-1029
Author(s):  
Hai Xia Gong ◽  
Jian Li ◽  
Yun Peng Wang ◽  
Hui Gang Qu

This paper firstly explained the working principle of Subsea Control Module (SCM) and function and performance of the electro-hydraulic control valves, and then mathematical model of the electro-hydraulic control valve in SCM was analyzed. The test board was designed according to characters of hydraulic system of the test stand. And on the basis of these, an effective testing method of the electro-hydraulic control valve in SCM has been defined. According to the test method of hydraulic system, we built and analyzed a model of the hydraulic test system by using the AMESim software. Based on the analysis results, the judgments whether or not the test stand could meet the requirements is made.


2021 ◽  
Vol 13 (3) ◽  
pp. 14-21
Author(s):  
Yurii Buriennikov ◽  
◽  
Leonid Kozlov ◽  
Oana Rusu ◽  
Viktor Matviichuk ◽  
...  

Mobile machine hydraulic circuits tend to adopt electrohydraulics. Such hydraulic circuits are based on controlled pumps, modulated hydraulics, sensors and controllers. This allows adapting the hydraulic circuit operating modes to the changes of external conditions of the machine operation. Application of hydraulic circuits with electrohydraulics in mobile machines allows to use mobile machines efficiently with a high number of removable endangers, increases their performance and improves the quality of performed works. The authors propose an adaptive hydraulic circuit for a mobile machine. The operation process in the adaptive hydraulic circuit in static and dynamic modes is determined by the interaction of the pump controller and pressure differential control valves. The hydraulic system operation stability, its fast response and readjustment are determined by the controller parameters. It has been revealed that the main parameters affecting the dynamic characteristics of the hydraulic system are: throttle area and coefficient of amplifying the pump controller orifice, dampener area and coefficient of amplifying the pressure differential control valve orifice. These parameters affect the stability, controlling and readjustment time in the hydraulic circuit differently. A functional including the values of controlling time , σ controlling and losses in the pump controller was used as an optimization criterion. The optimization has been made according to the developed mathematical model applying the method developed by I. Sobol and R. Statnikov. During the optimization each controller parameter changed on 3 levels. 81 tests were made and the best combination of controller parameters for the optimization criterion was determined. The following hydraulic circuit operation values were reached under the optimal values of parameters = 1.0·10-6 m2, = 1.0·10-3 m, = 1.2·10-6 m2, = 10·10-3 m: = 1.1 с, σ = 32 %, = 0.82 kW that comply with the requirements towards hydraulic circuits of mobile machines.


Sign in / Sign up

Export Citation Format

Share Document