The Fuel Mix Limits and Efficiency of a Stoichiometric, Ammonia, and Gasoline Dual Fueled Spark Ignition Engine

Author(s):  
Shawn M. Grannell ◽  
Dennis N. Assanis ◽  
Stanislav V. Bohac ◽  
Donald E. Gillespie

An overall stoichiometric mixture of air, gaseous ammonia, and gasoline was metered into a single cylinder, variable compression ratio, supercharged cooperative fuel research (CFR) engine at varying ratios of gasoline to ammonia. The engine was operated such that the combustion was knock-free with minimal roughness for all loads ranging from idle up to a maximum load in the supercharge regime. For a given load, speed, and compression ratio, there was a range of ratios of gasoline to ammonia for which knock-free, smooth firing was obtained. This range was investigated at its rough limit and also at its maximum brake torque (MBT) knock limit. If too much ammonia was used, then the engine fired with an excessive roughness. If too much gasoline was used, then knock-free combustion could not be obtained while the maximum brake torque spark timing was maintained. Stoichiometric operation on gasoline alone is also presented, for comparison. It was found that a significant fraction of the gasoline used in spark ignition engines could be replaced with ammonia. Operation on about 100% gasoline was required at idle. However, a fuel mix comprising 70% ammonia∕30% gasoline on an energy basis could be used at normally aspirated, wide open throttle. Even greater ammonia to gasoline ratios were permitted for supercharged operation. The use of ammonia with gasoline allowed knock-free operation with MBT spark timing at higher compression ratios and higher loads than could be obtained with the use of gasoline alone.

Author(s):  
Shawn M. Grannell ◽  
Dennis N. Assanis ◽  
Stanislav V. Bohac ◽  
Donald E. Gillespie

An overall stoichiometric mixture of air, gaseous ammonia and gasoline was metered into a single cylinder, variable compression ratio, supercharged CFR engine at varying ratios of gasoline to ammonia. The engine was operated such that the combustion was knock-free with minimal roughness for all loads ranging from idle up to a maximum load in the supercharge regime. For a given load, speed, and compression ratio there was a range of ratios of gasoline to ammonia for which knock-free, smooth firing was obtained. This range was investigated at its roughness limit and also at its knock limit. If too much ammonia was used, then the engine fired with an excessive roughness. If too much gasoline was used, then knock-free combustion could not be obtained while the maximum brake torque spark advance was maintained. Stoichiometric operation on gasoline alone was also investigated, for comparison. It was found that a significant fraction of the gasoline used in spark ignition engines could be replaced with ammonia. Operation on mostly gasoline was required near idle. However, mostly ammonia could be used at high load. Operation on ammonia alone was possible at some of the supercharged load points. Generally, the use of ammonia or ammonia with gasoline allowed knock-free operation at higher compression ratios and higher loads than could be obtained with the use of gasoline alone. The use of ammonia/gasoline allowed practical operation at a compression ratio of 12:1 whereas the limit for gasoline alone was 9:1. When running on ammonia/gasoline the engine could be operated at brake mean effective pressures that were more than 50% higher than those achieved with the use of gasoline alone. The maximum brake thermal efficiency achieved with the use of ammonia/gasoline was 32.0% at 10:1 compression ratio and BMEP = 1025 kPa. The maximum brake thermal efficiency possible for gasoline was 24.6% at 9:1 and BMEP = 570 kPa.


Author(s):  
M A R Sadiq Al-Baghdadi

In hydrogen-fuelled spark ignition engine applications, the onset of pre-ignition remains one of the prime limitations that needs to be addressed to avoid its incidence and achieve superior performance. This paper describes a new pre-ignition submodel for engine modelling codes. The effects of changes in key operating variables, such as compression ratio, spark timing, intake pressure, and temperature on pre-ignition limiting equivalence ratios are established both analytically and experimentally. With the established pre-ignition model, it is possible not only to investigate whether pre-ignition is observed with changing operating and design parameters, but also to evaluate those parameters' effects on the maximum possible pre-ignition intensity.


2003 ◽  
Vol 125 (2) ◽  
pp. 500-504 ◽  
Author(s):  
A. A. Attar ◽  
G. A. Karim

The knock tendency in spark ignition engines of binary mixtures of hydrogen, ethane, propane and n-butane is examined in a CFR engine for a range of mixture composition, compression ratio, spark timing, and equivalence ratio. It is shown that changes in the knock characteristics of binary mixtures of hydrogen with methane are sufficiently different from those of the binary mixtures of the other gaseous fuels with methane that renders the use of the methane number of limited utility. However, binary mixtures of n-butane with methane may offer a better alternative. Small changes in the concentration of butane produce almost linearly significant changes in both the values of the knock limited compression ratio for fixed spark timing and the knock limited spark timing for a fixed compression ratio.


Author(s):  
A. Beccari ◽  
S. Beccari ◽  
E. Pipitone

It is well known that the spark advance is one of the most important parameters influencing the efficiency of a spark ignition engine. A change in this parameter causes a shift in the combustion phase, whose optimal position, with respect to the piston motion, implies the maximum brake mean effective pressure for given operative conditions. The best spark timing is usually estimated by means of experimental trials on the engine test bed or by means of thermodynamic simulations of the engine cycle. In this work, instead, the authors developed, under some simplifying hypothesis, an original theoretical formulation for the estimation of the optimal combustion phase. The most significant parameters involved with the combustion phase are taken into consideration; in particular, the influence of the combustion duration, of the heat release law, of the heat transfer to the combustion chamber walls, and of the mechanical friction losses is evaluated. The theoretical conclusion, experimentally proven by many authors, is that the central point of the combustion phase (known as the location of the 50% of mass fraction burnt, here called MFB50) must be delayed with respect to the top dead center as a consequence of both heat exchange between gas and chamber walls and friction losses.


2013 ◽  
Vol 1 (2) ◽  
pp. 110-92
Author(s):  
Miqdam Tariq Chaichan

This paper examines the results of performance of a single cylinder spark-   ignition engine fuelled with 20% methanol +80% gasoline (M20), compared to gasoline. The experiments were conducted at stoichiometric air–fuel ratio at wide open throttle and variable speed conditions, over the range of 1000 to 2600 rpm. The tests were conducted at higher useful compression ratio using optimum spark timings and adding recirculated exhaust gas with 20% to suction manifold. The test results show that the higher compression ratio for the tested gasoline was 7:1, 9.5:1 for M20 and 9:1 for M20 with added EGR. M20 at higher useful compression ratio (HUCR) and optimum spark timing (OST) characteristics are significantly different from gasoline. Within the tested speed range, M20 consistently produces higher brake thermal efficiency by about 6%. Also it resulted in approximately 3.06% lower brake specific fuel consumption compared with gasoline. Adding EGR to M20 caused reduction in HUCR and advancing the OST. This addition increased brake specific fuel consumption (BSFC), reduced brake thermal energy, volumetric efficiency and exhaust gas temperatures.


2021 ◽  
Vol 3 (2) ◽  
pp. 450-461
Author(s):  
Magdalena Szwaja ◽  
Mariusz Chwist ◽  
Stanislaw Szwaja ◽  
Romualdas Juknelevičius

Thermal processing (torrefaction, pyrolysis, and gasification), as a technology can provide environmentally friendly use of plastic waste. However, it faces a problem with respect to its by-products. Pyrolysis oil obtained using this technology is seen as a substance that is extremely harmful for living creatures and that needs to be neutralized. Due to its relatively high calorific value, it can be considered as a potential fuel for internal combustion spark-ignition engines. In order make the combustion process effective, pyrolysis oil is blended with ethanol, which is commonly used as a fuel for flexible fuel cars. This article presents results from combustion tests conducted on a single-cylinder research engine at full load working at 600 rpm at a compression ratio of 9.5:1, and an equivalence ratio of 1. The analysis showed improvements in combustion and engine performance. It was found that, due to the higher calorific value of the blend, the engine possessed a higher indicated mean effective pressure. It was also found that optimal spark timing for this ethanol-pyrolysis oil blend was improved at a crank angle of 2–3° at 600 rpm. In summary, ethanol-pyrolysis oil blends at a volumetric ratio of 3:1 (25% pyrolysis oil) can successfully substitute ethanol in spark-ignition engines, particularly for vehicles with flexible fuel type.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4034
Author(s):  
Paolo Iodice ◽  
Massimo Cardone

Among the alternative fuels existing for spark-ignition engines, ethanol is considered worldwide as an important renewable fuel when mixed with pure gasoline because of its favorable physicochemical properties. An in-depth and updated investigation on the issue of CO and HC engine out emissions related to use of ethanol/gasoline fuels in spark-ignition engines is therefore necessary. Starting from our experimental studies on engine out emissions of a last generation spark-ignition engine fueled with ethanol/gasoline fuels, the aim of this new investigation is to offer a complete literature review on the present state of ethanol combustion in last generation spark-ignition engines under real working conditions to clarify the possible change in CO and HC emissions. In the first section of this paper, a comparison between physicochemical properties of ethanol and gasoline is examined to assess the practicability of using ethanol as an alternative fuel for spark-ignition engines and to investigate the effect on engine out emissions and combustion efficiency. In the next section, this article focuses on the impact of ethanol/gasoline fuels on CO and HC formation. Many studies related to combustion characteristics and exhaust emissions in spark-ignition engines fueled with ethanol/gasoline fuels are thus discussed in detail. Most of these experimental investigations conclude that the addition of ethanol with gasoline fuel mixtures can really decrease the CO and HC exhaust emissions of last generation spark-ignition engines in several operating conditions.


2017 ◽  
Vol 18 (9) ◽  
pp. 951-970 ◽  
Author(s):  
Riccardo Amirante ◽  
Elia Distaso ◽  
Paolo Tamburrano ◽  
Rolf D Reitz

The laminar flame speed plays an important role in spark-ignition engines, as well as in many other combustion applications, such as in designing burners and predicting explosions. For this reason, it has been object of extensive research. Analytical correlations that allow it to be calculated have been developed and are used in engine simulations. They are usually preferred to detailed chemical kinetic models for saving computational time. Therefore, an accurate as possible formulation for such expressions is needed for successful simulations. However, many previous empirical correlations have been based on a limited set of experimental measurements, which have been often carried out over a limited range of operating conditions. Thus, it can result in low accuracy and usability. In this study, measurements of laminar flame speeds obtained by several workers are collected, compared and critically analyzed with the aim to develop more accurate empirical correlations for laminar flame speeds as a function of equivalence ratio and unburned mixture temperature and pressure over a wide range of operating conditions, namely [Formula: see text], [Formula: see text] and [Formula: see text]. The purpose is to provide simple and workable expressions for modeling the laminar flame speed of practical fuels used in spark-ignition engines. Pure compounds, such as methane and propane and binary mixtures of methane/ethane and methane/propane, as well as more complex fuels including natural gas and gasoline, are considered. A comparison with available empirical correlations in the literature is also provided.


Sign in / Sign up

Export Citation Format

Share Document