Friction at a Lubricated Line Contact Operating at Oscillating Sliding Velocities

1990 ◽  
Vol 112 (1) ◽  
pp. 147-152 ◽  
Author(s):  
D. P. Hess ◽  
A. Soom

Although many contacts operate under unsteady loading and sliding conditions, friction behavior under such conditions is still not well understood. In this paper we report on a series of experiments that were run to examine friction-velocity characteristics of line contacts operating under unsteady sliding velocities in the mixed, elastohydrodynamic and hydrodynamic lubrication regimes. A periodic, time-varying velocity component was superimposed on a steady sliding speed in such a way that all three lubrication regimes could be covered in a cycle. It was found that as the frequency of oscillation was increased, a multi-valued friction coefficient appeared as a loop about the average (steady state) friction-velocity relation. It is shown that this behavior can be modeled by a characteristic time lag between a changing velocity and the corresponding steady state friction. The latter is described by a single equation that was matched to measured average friction data. In the mixed lubrication regime, which is where this lag most significantly affects friction behavior, the lag time increases with normal load and lubricant viscosity. It is shown that the time shift is not associated with a fixed characteristic distance. The observed delay arises due to entrainment and normal approach, which includes squeeze-films combined with rough surface contact deformations.

Author(s):  
Luca Bertocchi ◽  
Matteo Giacopini ◽  
Daniele Dini

In the present paper, the algorithm proposed by Giacopini et. al. [1], based on a mass-conserving formulation of the Reynolds equation using the concept of complementarity is suitably extended to include the effects of compressibility, piezoviscosity and shear-thinning on the lubricant properties. This improved algorithm is employed to analyse the performance of the lubricated small end and big end bearings of a connecting rod of a high performance motorbike engine. The application of the algorithm proposed to both the small end and the big end of a con-rod is challenging because of the different causes that sustain the hydrodynamic lubrication in the two cases. In the con-rod big end, the fluid film is mainly generated by the relative high speed rotation between the rod and the crankshaft. The relative speed between the two races forms a wedge of fluid that assures appropriate lubrication and avoids undesired direct contacts. On the contrary, at the con-rod small end the relative rotational speed is low and a complete rotation between the mating surfaces does not occurs since the con-rod only oscillates around its vertical axis. Thus, at every revolution of the crankshaft, there are two different moments in which the relative rotational speed between the con-rod and the piston pin is null. Therefore, the dominant effect in the lubrication is the squeeze caused by the high loads transmitted through the piston pin. In particular both combustion forces and inertial forces contribute to the squeeze effect. This work shows how the formulation developed by the authors is capable of predicting the performance of journal bearings in the unsteady regime, where cavitation and reformation occur several times. Moreover, the effects of the pressure and the shear rate on the density and on the viscosity of the lubricant are taken into account.


2021 ◽  
pp. 1-12
Author(s):  
Vimal Edachery ◽  
V. Swamybabu ◽  
Gurupatham Anand ◽  
Paramasamy Manikandan ◽  
Satish V. Kailas

Abstract Surface topography is a critical parameter that can influence friction and wear in engineering applications. In this work, the influence of surface topography directionality on seizure and scuffing initiation during tribological interactions is explored. For this, unidirectional sliding wear experiments were carried out in immersed lubrication conditions for various normal loads. The tribological interactions were studied using EN31-60 HRC flats and SAE52100-60HRC pins in a sphere on flat configuration. The results show that, in some cases, the sliding interactions in the initial cycles lead to a high friction coefficient of up to ∼0.68 in lubricated conditions, which was termed as ‘peak friction’, and this was accompanied by scuffing. The existence of peak friction was found to be dependent on surface topography directionality, especially when the directionality in topography was parallel to the sliding direction. Continuous ratchetting was found to be the cause of peak friction which was accompanied by seizure and scuffing. When the topography directionality was perpendicular or independent of sliding direction, elastic shakedown occurred at earlier cycles and prevented peak friction initiation, scuffing and also facilitated for higher steady-state friction values.


1962 ◽  
Vol 17 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Daniel J. Stone

A steady state metabolic alkalosis was induced in two subjects over a period of several days utilizing oral sodium bicarbonate in dosages of 50 g/day. The purpose of inducing steady state metabolic alkalosis was to study the effects of such a state on the respiratory center responses to inspired gas mixtures, containing carbon dioxide, and to contrast these results with the control studies. The experiment was so designed that the arterial pH in both subjects tended to return toward normal in the presence of significant increases in blood bicarbonate. Repeated study of ventilation responses with room air and 4% and 6% carbon dioxide in inspired air revealed a definite and significant decrease in ventilation response to carbon dioxide during the periods of steady state alkalosis as compared to the control periods. Normal responses returned after some time lag. A consistent rise in paCOCO2 occurred with alkalosis, thus demonstrating respiratory compensation. In neither subject was total lung function or gas exchange affected by the alkalosis. The experiment was confirmed on several occasions with reproducible results. Note: (With the Research Assistance of Mary Di Lieto) Submitted on May 22, 1961


1989 ◽  
Vol 256 (4) ◽  
pp. R1005-R1010
Author(s):  
D. Verotta ◽  
S. L. Beal ◽  
L. B. Sheiner

A semiparametric model for analysis of pharmacokinetic (PK) and pharmacodynamic (PD) data arising from non-steady-state experiments is presented. The model describes time lag between drug concentration in a sampling compartment, e.g., venous blood (Cv), and drug effect (E). If drug concentration at the effect site (Ce) equilibrates with arterial blood concentration (Ca) slower than with Cv, a non-steady-state experiment yields E vs. Cv data describing a counterclockwise hysteresis loop. If Ce equilibrates with Ca faster than with Cv, clockwise hysteresis is observed. To model hysteresis, a parametric model is proposed linking (unobserved) Ca to Cv with elimination rate constant kappa ov and also linking Ca to Ce with elimination rate constant kappa oe. When kappa oe is greater than (or less than) kappa ov clockwise (or counterclockwise) hysteresis occurs. Given kappa oe and kappa ov, numerical (constrained) deconvolution is used to obtain the disposition function of the arterial compartment (Ha), and convolution is used to calculate Ce given Ha. The values of kappa oe and kappa ov are chosen to collapse the hysteresis loops to single curves representing the Ce-E (steady-state) concentration-response curve. Simulations, and an application to real data, are reported.


The model considered in part I is generalized to include growth mechanisms in which the chemical reaction which proceeds at the particle-atm osphere interface is reversible, so that molecules may evaporate from a particle as well as condense upon it. The Becker-Döring-Zeldovich-Frenkel theory of homogeneous nucleation kinetics is then reviewed in the light of the known statistical problem of the birth -and -death process, and an improved approximation is introduced which significantly alters the calculated results. Both steady-state nucleation kinetics and the time lag problem are discussed.


Membranes ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Tiago M. Eusébio ◽  
Ana Rita Martins ◽  
Gabriela Pon ◽  
Mónica Faria ◽  
Pedro Morgado ◽  
...  

Due to their high hemocompatibility and gas permeation capacity, bi-soft segment polyurethane/polycaprolactone (PU/PCL) polymers are promising materials for use in membrane blood oxygenators. In this work, both nonporous symmetric and integral asymmetric PU/PCL membranes were synthesized, and the permeation properties of the atmospheric gases N2, O2, and CO2 through these membranes were experimentally determined using a new custom-built gas permeation apparatus. Permeate pressure vs. time curves were obtained at 37.0 °C and gas feed pressures up to 5 bar. Fluxes, permeances, and permeability coefficients were determined from the steady-state part of the curves, and the diffusion and sorption coefficients were estimated from the analysis of the transient state using the time-lag method. Independent measurements of the sorption coefficients of the three gases were performed, under equilibrium conditions, in order to validate the new setup and procedure. This work shows that the gas sorption in the PU/PCL polymers is the dominant factor for the permeation properties of the atmospheric gases in these membranes.


2019 ◽  
pp. 089270571987520
Author(s):  
Amine Charfi ◽  
Sameh Neili ◽  
Mohamed Kharrat ◽  
Maher Dammak

This research article deals with commercial polytetrafluoroethylene (PTFE)-based composites filled with 30% of bronze microparticles. This shade is used as guide rings in hydraulic cylinders. After a certain number of slip cycles, seal wear is one of the main causes of leaks in the hydraulic systems. To solve this problem, it is essential to act on the seal materials to increase its lifetime and consequently the lifetime of hydraulic systems. Excessive pressure on the seal causes a significant wear while a light contact causes lubricant leak. For both situations, we have a failure of the system. For this reason, it is necessary to have a perfect contact between the seal and the metal surface and simultaneously with minimal wear. This problem is the subject of our research works. We analyze, in this article, the tribological behavior of a PTFE/bronze composite under dry and lubricated sliding conditions for different frequencies and loads. An alternating linear motion ball/plane tribometer has been used to characterize friction and wear behavior of the material. Micrographic observation of wear track was taken with the optical microscope. The results showed the good friction behavior of material for low values of loads and frequencies and essentially for 33 N of load with 1 Hz frequency or for 81 N as normal load with 0.75 Hz frequency as well as lubrication improve the wear rate of the PTFE/bronze composite. Under lubrication, load and frequency become inversely proportional to friction coefficients.


2013 ◽  
Vol 401-403 ◽  
pp. 1010-1013
Author(s):  
Jing Ling ◽  
Jin Che ◽  
Da Ming Liu

Temperature control system of infrared heating oven in moisture analyzer is characteristic of nonlinear, time-varying and time-lag. A composite fuzzy control (CFC) method is proposed, which combines improved Bang-Bang control with two-stage intelligent fuzzy control. The control algorithm is implemented by MSP430F5438. When the temperature error e between the desired temperature and actual temperature in heating oven is larger than threshold value, the improved Bang-Bang controller is employed in rapidly reducing the error; to decrease the system overshoot, the basic fuzzy controller is used; to reduce the steady-state error of basic fuzzy controller, the auxiliary fuzzy controller is applied. The steady-state error of improved fuzzy controller for oven temperature is less than 0.5°C, which is better than the Chinese National Standards for moisture content measurement.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Huajie Tang ◽  
Jianlin Sun ◽  
Zhangliang Zhao ◽  
Zhao Han

Abstract The tribological behavior of lubricants, prepared with a mineral base oil, lauryl alcohol, and different concentrations of coumarin, was examined using a four-ball tester under constant and variable friction velocity conditions. At constant friction velocity, the maximum non-seizure load (PB) increased from 304 N to 392 N at a coumarin concentration of 0.5 wt%. Lubricants with 0.7 wt% coumarin exhibited optimum lubricating properties, and the maximum reductions in friction coefficient (FC) and wear scar diameter (WSD) were 20.0% and 11.88%, respectively. Further investigation of the tribological mechanism implied that the ester group in the coumarin molecule established a connection with the surface atom, resulting in the formation of a tribofilm, which further restricted the adhesion wear regime. Additionally, under variable friction velocity conditions, increasing the coumarin concentration had an obvious effect on the mixed lubrication (ML) and elasto-hydrodynamic lubrication (EHL) regions but not on other lubrication regions. Moreover, a mathematical model was proposed to show the relationship between FC and friction velocity. Importantly, the present work clarifies the effect of friction velocity on the tribological behavior of coumarin and also supports the use of coumarin as a novel additive in mineral oils.


2019 ◽  
Vol 16 (3) ◽  
pp. 172988141985097
Author(s):  
Xianliang Jiang ◽  
Huajie Hong

In the feedback control robotic systems, the repetitive control method has a high control performance for the track or elimination of the periodic signals. The promotion of the plug-in type configuration of the controller broadens the application range and applicability of the control method. In this article, a novel design algorithm based on the steady-state residual convergence ratio of the repetitive control system is proposed to improve the performance of the stabilized platform to resist the periodic perturbation. The basic structure and stable condition of the plug-in type repetitive control method are first introduced by applying the small gain theorem and the stability theorem for time-lag systems. Then the analysis of the convergence rate is utilized in constructing the basic index of the design algorithm of a plug-in type repetitive control system based on a steady-state residual convergence ratio. The parameters of the designed controller are checked by the validity condition of the plug-in type repetitive control system, and a simulation example is given to verify the effectiveness of the design algorithm. The article provides basic design guidelines and schemes for the design of the periodic disturbance suppression performance of the feedback control system. In the final physical prototype experiment, the prospective steady-state residual convergence ratio is basically achieved within the allowable range of error.


Sign in / Sign up

Export Citation Format

Share Document