Transient Analysis of Surface Features in an EHL Line Contact in the Case of Sliding

1994 ◽  
Vol 116 (2) ◽  
pp. 186-193 ◽  
Author(s):  
C. H. Venner ◽  
A. A. Lubrecht

This paper investigates in detail the influence of two different surface topographies on the pressure distribution and film thickness profile of a highly loaded (maximum Hertzian pressure 2 GPa) line contact as a function of the slide to roll ratio. To accomplish this the transient Reynolds equation is solved both in space and time. The first feature under investigation is localized, a so-called indentation, the second one is global: waviness. The observed lack of synchronism in the extremes of pressure and film thickness is explained theoretically by analyzing the Reynolds equation. The minimum and average film thickness values in case of waviness are analyzed as a function of the slide to roll ratio, amplitude, and wavelength. Depending on the slide to roll ratio, the transient solutions may differ significantly from their stationary counterparts. In such cases, therefore, a transient analysis cannot be avoided.

2013 ◽  
Vol 281 ◽  
pp. 329-334
Author(s):  
Jun He ◽  
Huang Ping ◽  
Qian Qian Yang

In the present paper, a new method for measuring elastohydrodynamic lubrication (EHL) pressure in line contact is proposed, which is based on the photoelastic technique. The pressure distribution of EHL film and the inner stresses in the friction pairs are fundamental issues to carry out EHL research. The film thickness, pressure and temperature have been successfully obtained with solving the basic equations such as Reynolds equation and energy equation simultaneously or separately, with numerical model of EHL problem. The film thickness can be also measured with the optical interference technique. However, the pressure measurement is still a problem which has not been well solved yet, so as the inner stresses inside the friction pairs. With the experimental mechanics, the photoelastic technique is a possible method to be used for measuring the pressure distribution of EHL film and inner friction pair in the line contact. Therefore, A flat plastic disk and a steel roller compose the frictional pairs of the photoelastic pressure measuring rig with combining the monochromatic LED light source, polarizer CCD camera and stereomicroscope to form the whole pressure measuring system of the line contact EHL. The experimental results with the rig display the typical features of EHL pressure. This shows that the method is feasible to be used for measuring the pressure of EHL film and the inner stresses of the friction pairs in the line contact.


2007 ◽  
Vol 353-358 ◽  
pp. 796-800
Author(s):  
Xiao Wang ◽  
Jian Li ◽  
Wei Chen ◽  
Lan Cai ◽  
Jian Ying Zhu

Fabricating surfaces with controlled micro-geometry may be an effective approach to improved tribological performance. In this paper, the effect of laser surface micro-mesh texturing on the tribological performance is investigated theoretically with numerical solution of EHL point contact. In the theoretical model, the Reynolds equation is used as the governing equation. Well controlled micro-mesh texturing is described in film thickness equation. By Full Multi-Grid (FMG) method, the solutions of film thickness profile and pressure distribution map are present over a wide range of texturing parameters. The influence of width, depth and orientation of mesh texturing on the friction coefficient is analyzed. Result shows that, the film thickness profile and pressure distribution are sensitive to the parameters of micro-mesh texturing. The curve result of friction coefficient under two load conditions indicated that the parameters of mesh are key factor for texturing design. Solutions demonstrate the ability of numerical simulation on the design and optimization of surface mesh texturing.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohamed Abd Alsamieh

Purpose The purpose of this paper is to study the behavior of a single ridge passing through elastohydrodynamic lubrication of point contacts problem for different ridge shapes and sizes, including flat-top, triangular and cosine wave pattern to get an optimal ridge profile. Design/methodology/approach The time-dependent Reynolds’ equation is solved using Newton–Raphson technique. Several shapes of surface feature are simulated and the film thickness and pressure distribution are obtained at every time step by simultaneous solution of the Reynolds’ equation and film thickness equation, including elastic deformation. Film thickness and pressure distribution are chosen to be the criteria in the comparisons. Findings The geometrical characteristics of the ridge play an important role in the formation of lubricant film thickness profile and the pressure distribution through the contact zone. To minimize wear, friction and fatigue life, an optimal ridge profile should have smooth shape with small ridge size. Obtained results are compared with other published numerical results and show a good agreement. Originality/value The study evaluates the performance of different surface features of a single ridge with different shapes and sizes passing through elastohydrodynamic of point contact problem in relation to film thickness and pressure profile.


2011 ◽  
Vol 148-149 ◽  
pp. 778-784
Author(s):  
Rattapasakorn Sountaree ◽  
Panichakorn Jesda ◽  
Mongkolwongrojn Mongkol

This paper presents the performance characteristics of two surfaces in line contact under isothermal mixed lubrication with non-Newtonian liquid–solid lubricant base on Power law viscosity model. The time dependent Reynolds equation, elastic equation and viscosity equation were formulated for compressible fluid. Newton-Raphson method and multigrid technique were implemented to obtain film thickness profiles, friction coefficient and load carrying in the contact region at various roughness amplitudes, applied loads, speeds and the concentration of solid lubricant. The simulation results showed that roughness amplitude has a significant effect on the film pressure, film thickness and surface contact pressure in the contact region. The film thickness decrease but friction coefficient and asperities load rapidly increases when surface roughness amplitude increases or surface speed decreases. When the concentration of solid lubricant increased, friction coefficient and asperities load decrease but traction and film thickness increase.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
M. Masjedi ◽  
M. M. Khonsari

Three formulas are derived for predicting the central and the minimum film thickness as well as the asperity load ratio in line-contact EHL with provision for surface roughness. These expressions are based on the simultaneous solution to the modified Reynolds equation and surface deformation with consideration of elastic, plastic and elasto-plastic deformation of the surface asperities. The formulas cover a wide range of input and they are of the form f(W, U, G, σ¯, V), where the parameters represented are dimensionless load, speed, material, surface roughness and hardness, respectively.


1981 ◽  
Vol 103 (4) ◽  
pp. 539-546 ◽  
Author(s):  
H. P. Evans ◽  
R. W. Snidle

The paper describes a technique for solving the inverse lubrication problem under point contact elastohydrodynamic conditions, i.e. the calculation of a film thickness and shape corresponding to a given hydrodynamic pressure distribution by an inverse solution of Reynolds’ equation. The effect of compressibility and influence of pressure upon viscosity are included in the analysis. The technique will be of use in solving the point contact elastohydrodynamic lubrication problem at heavy loads.


1974 ◽  
Vol 96 (2) ◽  
pp. 206-209 ◽  
Author(s):  
P. R. K. Murti

The squeeze film behavior between two circular disks is analyzed when one disk has a porous facing and approaches the other disk with uniform velocity. The modified Reynolds equation governs the pressure in the film region while the pressure in the porous facing satisfies the Laplace equation. These equations are solved in a closed form and expressions are derived for pressure distribution, load capacity, and time of approach for the plates in terms of Fourier-Bessel series. It is found that an enhanced value for the permeability parameter diminishes the pressure over the entire disk and also evens out the pressure distribution; however, there is an adverse effect on the load capacity and time of approach. Unlike in the nonporous case, the entire fluid can be squeezed out in a finite time resulting in actual contact of the disks. The porous effects are shown to predominate at very low film thickness values.


1972 ◽  
Vol 94 (1) ◽  
pp. 64-68 ◽  
Author(s):  
Hai Wu

The squeeze film between two rectangular plates when one has a porous facing is studied theoretically. The problem is described by the modified Reynolds equation in the film region and the Laplace equation in the porous region. Results are presented for pressure distribution, load-carrying capacity, and film thickness as functions of time in series form. The effect of the porous facing on the squeeze film behavior is discussed and found to be important.


2013 ◽  
Vol 318 ◽  
pp. 148-152
Author(s):  
Yao Yao Hong ◽  
Li Jun Du ◽  
She Miao Qi

The finite element method (FEM) is applied in the numerical simulation of heavy hydrostatic thrust bearings to study the influence of pressure and temperature on bearing deformation. The pressure distribution and the temperature distribution are obtained by solving the Reynolds equation and the energy equation. The bearing deformations caused by temperature and pressure are computed by imposing the two obtained distributions on the bearing. Because the pressure distribution and the temperature distribution are influenced by the oil film thickness and the oil film thickness is influenced by the bearing deformation, the numerical simulation is a process of iteration. The numerical results demonstrate that, in heavy hydrostatic thrust bearings, the thermal deformation and the mechanical deformation are both significant and can not be neglected. The influence of operation parameters on the anti-capsizing capability of heavy hydrostatic thrust bearings is also discussed. The obtained results reveal that, the anti-capsizing moment of the bearing increases with the decrease of the central thickness of the oil film.


Sign in / Sign up

Export Citation Format

Share Document