Visualization Studies in Rotating Disk Cavity Flows

1990 ◽  
Vol 112 (2) ◽  
pp. 308-310 ◽  
Author(s):  
J. Nordquist ◽  
S. Abrahamson ◽  
J. Wechkin ◽  
J. Eaton

An experimental study was performed in a simplified turbine disk cavity consisting of a single disk rotating near a stationary flat plate, bounded radially by an axial seal fixed to the plate. The disk Reynolds number was 6.2 × 105. Cooling flow was supplied axially at a dimensionless radius of 0.33. Flow visualization showed boundary layers on both the rotating and stationary disks with the core between the layers rotating in solid body motion. At intermediate cooling flow rates, large vortical structures aligned with the disk spin axis and spanning the core were observed.

1986 ◽  
Vol 108 (3) ◽  
pp. 540-546 ◽  
Author(s):  
H. J. Carper ◽  
J. J. Saavedra ◽  
T. Suwanprateep

Results are presented from an experimental study conducted to determine the average convective heat transfer coefficient for the side of a rotating disk, with an approximately uniform surface temperature, cooled by a single liquid jet of oil impinging normal to the surface. Tests were conducted over a range of jet flow rates, jet temperatures, jet radial positions, and disk angular velocities with various combinations of three jet nozzle and disk diameters. Correlations are presented that relate the average Nusselt number to rotational Reynolds number, jet Reynolds number, jet Prandtl number, and dimensionless jet radial position.


2019 ◽  
Vol 89 ◽  
pp. 04005 ◽  
Author(s):  
A Giwelli ◽  
MZ Kashim ◽  
MB Clennell ◽  
L Esteban ◽  
R Noble ◽  
...  

We conducted relatively long duration core-flooding tests on three representative core samples under reservoir conditions to quantify the potential impact of flow rates on fines production/permeability change. Supercritical CO2 was injected cyclically with incremental increases in flow rate (2─14 ml/min) with live brine until a total of 7 cycles were completed. To avoid unwanted fluid-rock reaction when live brine was injected into the sample, and to mimic the in-situ geochemical conditions of the reservoir, a packed column was installed on the inflow accumulator line to pre-equilibrate the fluid before entering the core sample. The change in the gas porosity and permeability of the tested plug samples due to different mechanisms (dissolution and/or precipitation) that may occur during scCO2/live brine injection was investigated. Nuclear magnetic resonance (NMR) T2 determination, X-ray CT scans and chemical analyses of the produced brine were also conducted. Results of pre- and post-test analyses (poroperm, NMR, X-ray CT) showed no clear evidence of formation damage even after long testing cycles and only minor or no dissolution (after large injected pore volumes (PVs) ~ 200). The critical flow rates (if there is one) were higher than the maximum rates applied. Chemical analyses of the core effluent showed that the rock samples for which a pre-column was installed do not experience carbonate dissolution.


2006 ◽  
Vol 129 (3) ◽  
pp. 769-777 ◽  
Author(s):  
Paul Lewis ◽  
Mike Wilson ◽  
Gary Lock ◽  
J. Michael Owen

This paper compares heat transfer measurements from a preswirl rotor–stator experiment with three-dimensional (3D) steady-state results from a commercial computational fluid dynamics (CFD) code. The measured distribution of Nusselt number on the rotor surface was obtained from a scaled model of a gas turbine rotor–stator system, where the flow structure is representative of that found in an engine. Computations were carried out using a coupled multigrid Reynolds-averaged Navier-Stokes (RANS) solver with a high Reynolds number k-ε∕k-ω turbulence model. Previous work has identified three parameters governing heat transfer: rotational Reynolds number (Reϕ), preswirl ratio (βp), and the turbulent flow parameter (λT). For this study rotational Reynolds numbers are in the range 0.8×106<Reϕ<1.2×106. The turbulent flow parameter and preswirl ratios varied between 0.12<λT<0.38 and 0.5<βp<1.5, which are comparable to values that occur in industrial gas turbines. Two performance parameters have been calculated: the adiabatic effectiveness for the system, Θb,ad, and the discharge coefficient for the receiver holes, CD. The computations show that, although Θb,ad increases monotonically as βp increases, there is a critical value of βp at which CD is a maximum. At high coolant flow rates, computations have predicted peaks in heat transfer at the radius of the preswirl nozzles. These were discovered during earlier experiments and are associated with the impingement of the preswirl flow on the rotor disk. At lower flow rates, the heat transfer is controlled by boundary-layer effects. The Nusselt number on the rotating disk increases as either Reϕ or λT increases, and is axisymmetric except in the region of the receiver holes, where significant two-dimensional variations are observed. The computed velocity field is used to explain the heat transfer distributions observed in the experiments. The regions of peak heat transfer around the receiver holes are a consequence of the route taken by the flow. Two routes have been identified: “direct,” whereby flow forms a stream tube between the inlet and outlet; and “indirect,” whereby flow mixes with the rotating core of fluid.


2009 ◽  
Vol 6 (4) ◽  
pp. 240-249 ◽  
Author(s):  
Ala'aldeen T. Al-Halhouli

This work surveys recent advances of experimental and analytical development progress of the on-disk viscous micro-pumps: spiral channel, single disk, and double disk micropumps. These micropumps have attractive advantages for handling particle-laden fluids which make them key components in laboratory-on-a-chip applications. This study builds upon existing reviews and reports on the on-disk viscous micropump concept and analytical and experimental tests. It also presents a general analytical solution that estimates for the combined effect of operational and geometrical design parameters on the flow performance of on-disk viscous micropumps. This model enables microfluidic systems designers and developers to predict flow rates and pressures according to certain geometrical or operational conditions. Quantitative comparison and verifications are provided in tabular and graphical forms.


1992 ◽  
Vol 114 (2) ◽  
pp. 454-461 ◽  
Author(s):  
S. H. Bhavnani ◽  
J. M. Khodadadi ◽  
J. S. Goodling ◽  
J. Waggott

Results are presented for an experimental study of fluid flow in models of gas turbine disk cavities. Experiments were performed on 70-cm-dia disks for rotational Reynolds numbers up to 2.29 × 106. Velocity and pressure distributions are presented and compared to previous theoretical and experimental studies for a free disk, and an unshrouded plane Rotor–Stator disk system. Minimum coolant flow rates for the prevention of ingress, determined for the case of a simple axial rim seal, compare well with previously published data.


2019 ◽  
Vol 6 (5) ◽  
pp. 181928 ◽  
Author(s):  
Xiaolin Zhang ◽  
Lin Weng ◽  
Qingsheng Liu ◽  
Dawei Li ◽  
Bingyao Deng

Alginate microfibres were fabricated by a simple microfluidic spinning device consisting of a coaxial flow. The inner profile and spinnability of polymer were analysed by rheology study, including the analysis of viscosity, storage modulus and loss modulus. The effect of spinning parameters on the morphological structure of fibres was studied by SEM, while the crystal structure and chemical group were characterized by FTIR and XRD, respectively. Furthermore, the width and depth of grooves on the fibres was investigated by AFM image analysis and the formation mechanism of grooves was finally analysed. It was illustrated that the fibre diameter increased with an increase in the core flow rate, whereas on the contrary of sheath flow rate. Fibre diameter exhibited an increasing tendency as the concentration of alginate solution increased, and the minimum spinning concentration of alginate solution was 1% with the finest diameter being around 25 µm. Importantly, the grooved structure was obtained by adjusting the concentration of solutions and flow rates, the depth of groove increased from 278.37 ± 2.23 µm to 727.52 ± 3.52 µm as the concentration varied from 1 to 2%. Alginate fibres, with topological structure, are candidates for wound dressing or the engineering tissue scaffolds.


1999 ◽  
Vol 121 (2) ◽  
pp. 249-256 ◽  
Author(s):  
R. Pilbrow ◽  
H. Karabay ◽  
M. Wilson ◽  
J. M. Owen

In most gas turbines, blade-cooling air is supplied from stationary preswirl nozzles that swirl the air in the direction of rotation of the turbine disk. In the “cover-plate” system, the preswirl nozzles are located radially inward of the blade-cooling holes in the disk, and the swirling airflows radially outward in the cavity between the disk and a cover-plate attached to it. In this combined computational and experimental paper, an axisymmetric elliptic solver, incorporating the Launder–Sharma and the Morse low-Reynolds-number k–ε turbulence models, is used to compute the flow and heat transfer. The computed Nusselt numbers for the heated “turbine disk” are compared with measured values obtained from a rotating-disk rig. Comparisons are presented, for a wide range of coolant flow rates, for rotational Reynolds numbers in the range 0.5 X 106 to 1.5 X 106, and for 0.9 < βp < 3.1, where βp is the preswirl ratio (or ratio of the tangential component of velocity of the cooling air at inlet to the system to that of the disk). Agreement between the computed and measured Nusselt numbers is reasonably good, particularly at the larger Reynolds numbers. A simplified numerical simulation is also conducted to show the effect of the swirl ratio and the other flow parameters on the flow and heat transfer in the cover-plate system.


Author(s):  
Jose Urcia ◽  
Michael Kinzel

Abstract The Discrete Element Roughness Method (DERM) has been used to improve convective heat transfer predictions on surface roughness. This work aims to validate the core momentum-correlation of DERM through evaluating Computational fluid dynamics (CFD)-based solution of the flow around individual roughness elements with the goal of improving the correlations. More specifically, the matrix of scenarios evaluated using includes three different roughness elements at three different pressure drops (or flow rates). Results from these studies are to be used to validate and improve correlations used to approximate roughness in DERM. For further comparison, a fourth roughness element analyzed in previous work will also be compared. For each element, a steady and unsteady case are conducted and analyzed. The momentum loss results obtained from the CFD are then compared to the DERM-based predictions from the same roughness elements in search of any discrepancies. It is observed the momentum-correlation deviates from the CFD prediction with increasing element height.


Author(s):  
Chyouhwu Brian Huang ◽  
Hung-Shyong Chen

Due to the soaring energy prices, the cost to maintain a basic living standard has increased, therefore choosing right insulated materials when building a new house/appliance is important. The heat transfer coefficient plays a vital role; therefore, developing an effective, accurate, and low cost testing machine is an important issue. This is also the goal of this research. The testing apparatus developed can be used to measure the thermal conductivity as a basis for the choice of the materials. The heat conduction testing equipment was designed using “the thermal conductivity comparison with a known conductivity” method in addition to the basic heat conduction theory. For the best results, several parameters were used to fine-tune the operating conductions, such as cooling flow rate, heat source temperature, etc. Three types of materials were used as the sample for verifying the accuracy of the developed apparatus: gypsum board, silicon cement and PE polyethylene foam. Four heat sources temperatures were tested: 30°C, 35°C, 40°C, and 45°C. Two cooling flow rates were used: 108 liter/hour and 90 liter/hour. In the end, ANSYS was used to validate the testing results. The testing results show that the measured thermal conductivity is accurate. Equilibrium can be reached faster when testing with high cooling flow rates. The best hot plate temperature is 30°C.


2008 ◽  
Vol 598 ◽  
pp. 451-464 ◽  
Author(s):  
BERTRAND VIAUD ◽  
ERIC SERRE ◽  
JEAN-MARC CHOMAZ

Spectral direct numerical simulations (DNS) are carried out for a source–sink flow in an annular cavity between two co-rotating disks. When the Reynolds number based on the forced inflow is increased, a self-sustained crossflow instability of finite amplitude is observed. We show that this nonlinear global mode is made up of a front located at the upstream boundary of the absolutely unstable domain, followed by a saturated spiral mode, and that its properties are in good agreement with results of the local stability theory. This structure is characteristic of the so-called elephant mode of Pier & Huerre (J. Fluid Mech. vol. 435, 2001, p. 145). The global bifurcation is subcritical since only large-amplitude initial perturbations are found to trigger the elephant mode. Small-amplitude perturbations induce a long-lasting transient growth but lead eventually to a damped linear global mode, showing that non-parallel effects counteract the absolute instability and restabilize the flow. A similar linear global stabilization due to non-parallel effects has been found in the case of the flow above a single rotating disk. For the single-disk geometry, the existence of an elephant mode would imply, together with results of Davies & Carpenter (2003) a subcritical global instability, which has not yet been demonstrated. Although the present geometry differs from the single-disk case, the existence of a subcritical global bifurcation is now established, allowing a precise analysis of the transition scenarios.


Sign in / Sign up

Export Citation Format

Share Document