Linear Analysis Method for the Dynamic Response of a Winkler Foundation-Supported Elastic Plate Subjected to Low Velocity Projectile Impact

1994 ◽  
Vol 116 (1) ◽  
pp. 67-70 ◽  
Author(s):  
Wei Huang ◽  
Yida Zou

This work considers the dynamic response of an elastic plate with arbitrary boundary shape supported by a linear viscoelastic Winkler foundation, and impacted by a low velocity projectile. A nonlinear Volterra integral equation on impact force F (t) is deduced, and an effective numerical method is used to solve the equation and calculate the transverse deflection of the plate. The presence of the foundation in our problem has the effect of damping the transverse vibration of the plate owing to the absorbed energy. As a practical example, the transverse deflection of a square plate with simply supported edges impacted centrally by a sphere and the impact force are computed numerically.

Author(s):  
W Huang ◽  
Y Li ◽  
W Chen

In this paper, the dynamic response of a thin circular elastic plate supported by a fluid on one side and impacted by a low-velocity projectile on the other side is analysed for the first time. A semi-analytical method is put forward, a non-linear Volterra integral equation governing the impact force is deduced and a linear numerical method is used to solve the equation and calculate the transverse deflection of the plate. The presence of the fluid not only lowers, on account of increased inertia, the natural frequency of the plate vibrating in vacuum but also dampens its transverse vibration owing to the energy carried off in the form of sound waves. As a numerical example, the transverse deflection of a solid circular plate with clamped edges impacted centrally by a low-velocity sphere and the impact force are computed, and the results are discussed.


2019 ◽  
Vol 19 (08) ◽  
pp. 1950091 ◽  
Author(s):  
Wuchao Zhao ◽  
Jiang Qian

Reinforced concrete (RC) beams under the impact loading are typically prone to suffer shear failure in the local response phase. In order to enhance the understanding of the mechanical behavior of the RC beams, their dynamic response and shear demand are numerically investigated in this paper. A 3D finite-element model is developed and validated against the experimental data available in the literature. Taking advantage of the above calibrated numerical model, an intensive parametric study is performed to identify the effect of different factors including the impact velocity, impact mass and beam span-to-depth ratio on the impact response of the RC beams. It is found that, due to the inertial effect, a linear relationship exists between the maximum reverse support force and the peak impact force, while negative bending moments also appear in the shear span. In addition, the local response of the RC beams can be divided into a first impact stage and a separation stage. A shear plug is likely to be formed near the impact point at the first impact stage and a shear failure may be triggered near the support by large support forces. Based on the simulation results, simplified methods are proposed for predicting the shear demand for the two failure modes, whereas physical models are also established to illustrate the resistance mechanism of the RC beams at the peak impact force. By comparing with the results of the parametric study, it is concluded that the shear demand of the RC beams under the impact loading can be predicted by the proposed empirical formulas with reasonable accuracy.


2013 ◽  
Vol 462-463 ◽  
pp. 428-431
Author(s):  
Liang Cai Xiong ◽  
Quan Sheng Zhou ◽  
Peng Chen

The dynamic response of different micro-beams after laser excitation experiments have been investigated in this paper. The impact force that induces the vibration of micro-beams is the interaction of focused pulse laser and tested beams. The impact response of micro-beams after being excited is measured by Laser Doppler Vibrometer. Different beams such as cantilever beam, L-shaped beam are employed in our experiments. Comparisons of the vibration velocity and its frequencies of different beams have also been performed. Experimental results show that the mechanical effects of laser shock do really exist and can be utilized.


2010 ◽  
Vol 163-167 ◽  
pp. 327-331 ◽  
Author(s):  
Liang Zheng ◽  
Zhi Hua Chen

Finite element model of both the single-layer Schwedler reticulated dome with the span of 50m and a Cuboid impactor were developed, incorporating ANSYS/LS-DYNA. PLASTIC_KINEMATIC (MAT_003) material model which takes stain rate into account was used to simulate steel under impact load. The automatic point to surface contact (NODES TO SURFACE) was applied between the dome and impact block. Three stages of time history curve of the impact force on the apex of the single-layer Scheduler reticulated dome including the impact stage, stable stalemate stage, the decaying stage were generalized according to its dynamic response. It must be pointed out that the peak of the impact force of the single-layer reticulated dome increase with the increase of the weight and the velocity of the impact block, but the change of the velocity of the impact block is more sensitive than the change of weight of the impact block for the effect of the peak of the impact force, and a platform value of the impact force of the single-layer reticulated dome change near a certain value, and the duration time of the impact gradually increase. Then four stages of time history curve of the impact displacement were proposed according to the dynamic response of impact on the apex of the single-layer reticulated dome based on numerical analysis. Four stages include in elastic deformation stage, plastic deformation stage, elastic rebound stage, free vibration stage in the position of the residual deformation.


Author(s):  
Xiaoyao Shen ◽  
Yongcheng Xie

The control rod drive mechanism (CRDM) is an important safety-related component in the nuclear power plant (NPP). When CRDM steps upward or downward, the pressure-containing housing of CRDM is shocked axially by an impact force from the engagement of the magnetic pole and the armature. To ensure the structural integrity of the primary coolant loop and the functionality of CRDM, dynamic response of CRDM under the impact force should be studied. In this manuscript, the commercial finite element software ANSYS is chosen to analyze the nonlinear impact problem. A nonlinear model is setup in ANSYS, including main CRDM parts such as the control rod, poles and armatures, as well as nonlinear gaps. The transient analysis method is adopted to calculate CRDM dynamic response when it steps upward. The impact loads and displacements at typical CRDM locations are successfully obtained, which are essential for design and stress analysis of CRDM.


Author(s):  
K. Malekzadeh ◽  
M. R. Khalili

Dynamic response of sandwich panels with a flexible core under simultaneous low-velocity impacts of multiple small masses has investigated in this paper. The contact forces between the panel and the impactors are treated as the internal forces of the system. Shear deformation theory is used for the face sheets while three dimensional elasticity is used for the soft core. The fully dynamic effects of the core layer and the face-sheets are considered in this study. The results in multiple mass impacts over sandwich panels are presented based on proposed improved higher-order sandwich plate theory (IHSAPT). As no literature could be found on the impact of multiple impactors over sandwich panels, the present formulation is validated indirectly by comparing the response of two cases of double small masses and single small mass impacts based on Olsson’s wave control principle.


2007 ◽  
Vol 347 ◽  
pp. 665-670 ◽  
Author(s):  
Nicolae Constantin ◽  
Mircea Găvan ◽  
Marin Sandu ◽  
Ştefan Sorohan ◽  
Viorel Anghel

Low velocity impact is a frequent and inevitable in-service event, with higher occurrence in transportation structures. The damages following such an event are more diverse, extended and with more severe consequences in the case of composite materials and structures. The research work presented here concerns fibre reinforced polymeric composites in the forms of plates and pipes. It is continuing an effort meant to allow customers exploiting such structures to have a short cut in monitoring the integrity of this kind of structures. To this end, it is proposed a careful following of the impact force history recording, which can offer valuable and more direct information about the damage level produced under this insidious loading.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Bailong Li ◽  
Changming Wang ◽  
Yanying Li ◽  
Yiao Liu ◽  
Nan Jiang ◽  
...  

Based on the coupled SPH-DEM-FEM numerical method, this paper analyzes the dynamic interaction of solid debris flow particle-liquid debris flow slurry-retaining dam in order to explore the dynamic response of retaining dam under the impact of the solid-liquid two-phase debris flow and delves into the process of the debris flow impact on the dam, the impact force of debris flow, and the elastic-plastic time-history characteristics of the dam under different slopes of trapezoidal grooves. The calculation results show that the coupled SPH-DEM-FEM method can vividly simulate the impact behavior of the solid-liquid two-phase debris flow on the dam, reproduce the impact, climbing, and siltation in the process of the debris flow impact; the dynamic time-history curve of the retaining dam is consistent with the law of the literature, and the result of the debris flow impact force obtained is close to that of the empirical formula. Moreover, this paper studies the impact force distribution of the debris flow impact process. The results have a certain reference value for the study of the dynamic response of the retaining dam under the impact of the solid-liquid two-phase debris flow and the engineering design of the debris flow-retaining dam.


2019 ◽  
Vol 812 ◽  
pp. 17-24
Author(s):  
Mario Emanuele de Simone ◽  
Francesco Ciampa ◽  
Michele Meo

This research work presents a hierarchical method able to reconstruct the time history of the impact force on a composite wing stringer-skin panel by using the structural responses measured by a set of surface bonded ultrasonic transducers. Time reversal method was used to identify the impact location by the knowledge of structural responses recorded from a set of excitation points arbitrarily chosen on the plane of the structure. Radial basis function interpolation approach was then used to calculate the transfer function at the impact point and reconstruct the impact force history. Experimental results showed the high level of accuracy of the proposed impact force reconstruction method for a number of low-velocity impact sources and energies.


2012 ◽  
Vol 170-173 ◽  
pp. 1361-1366 ◽  
Author(s):  
Zhao Bo Meng ◽  
Teng Fei Zhao ◽  
Shi Cai Cui ◽  
Jie Jin

Taking Xi’an Bell Tower and metro line 2 as research background, at first, according to the theory of Euler-Bernoulli beam in Winkler foundation, the analysis model of train-track-foundation system was established, and then, time-history curve of metro-induced loading acts on tunnel structure is obtained by using Matlab produce platform. Secondly, two-dimensional finite element model of the structure-soil-tunnel interaction model was established using ANSYS. Taken loading time delay into consideration for the first time, dynamic response law of the bell tower under the metro-vibration loading is obtained. Finally, the impact of metro line 2 on Xi’an Bell Tower was evaluated according to the Technical specification for protection of historic buildings against man-made vibration.


Sign in / Sign up

Export Citation Format

Share Document