Transient Development of Flame and Soot Distribution in Laminar Diffusion Flame With Preheated Air

Author(s):  
Bijan Kumar Mandal ◽  
Amitava Sarkar ◽  
Amitava Datta

A numerical investigation of the transient development of flame and soot distributions in a laminar axisymmetric coflowing diffusion flame of methane in air has been carried out considering the air preheating effect. The gas phase conservation equations of mass, momentum, energy, and species concentrations along with the conservation equations of soot mass concentration and number density are solved simultaneously, with appropriate boundary conditions, by an explicit finite difference method. Average soot diameters are then calculated from these results. It is observed that the soot is formed in the flame when the temperature exceeds 1300 K. The contribution of surface growth toward soot formation is more significant compared with that of nucleation. Once the soot particles reach the high temperature oxygen-enriched zone beyond the flame, the soot oxidation becomes important. During the initial period, when soot oxidation is not contributing significantly, some of the soot particles escape into the atmosphere. However, under steady condition the exhaust product gas is nonsooty. Preheating of air increases the soot volume fraction significantly. This is both due to more number of soot particles and the increase in the average diameter. However, preheating of air does not cause a qualitative difference in the development of the soot-laden zone during the flame transient period.

2021 ◽  
Author(s):  
Amit Makhija ◽  
Krishna Sesha Giri

Abstract Soot volume fraction predictions through simulations carried out on OpenFOAM® are reported in diffusion flames with ethylene fuel. A single-step global reaction mechanism for gas-phase species with an infinitely fast chemistry assumption is employed. Traditionally soot formation includes inception, nucleation, agglomeration, growth, and oxidation processes, and the individual rates are solved to determine soot levels. However, in the present work, the detailed model is replaced with the soot formation and oxidation rates, defined as analytical functions of mixture fraction and temperature, where the net soot formation rate can be defined as the sum of individual soot formation and oxidation rates. The soot formation/oxidation rates are modelled as surface area-independent processes. The flame is modelled by solving conservation equations for continuity, momentum, total energy, and species mass fractions. Additionally, separate conservation equations are solved to compute the mixture fraction and soot mass fraction consisting of source terms that are identical and account for the mixture fraction consumption/production due to soot. As a consequence, computational time can be reduced drastically. This is a quantitative approach that gives the principal soot formation regions depending on the combination of local mixture fraction and temperature. The implemented model is based on the smoke point height, an empirical method to predict the sooting propensity based on fuel stoichiometry. The model predicts better soot volume fraction in buoyant diffusion flames. It was also observed that the optimal fuel constants to evaluate soot formation rates for different fuels change with fuel stoichiometry. However, soot oxidation strictly occurs in a particular region in the flame; hence, they are independent of fuel. The numerical results are compared with the experimental measurements, showing an excellent agreement for the velocity and temperature. Qualitative agreements are observed for the soot volume fraction predictions. A close agreement was obtained in smoke point prediction for the overventilated flame. An established theory through simulations was also observed, which states that the amount of soot production is proportional to the fuel flow rate. Further validations underscore the predictive capabilities. Model improvements are also reported with better predictions of soot volume fractions through modifications to the model constants based on mixture fraction range.


Author(s):  
Achin Kumar Chowdhuri ◽  
Arindam Mitra ◽  
Somnath Chakraborti ◽  
Bijan Kumar Mandal

Although diffusion flame is free from many problems associated with premixed flame, soot formation is a major problem in diffusion flame. The techniques of dilution of fuel or air with inert gases such as nitrogen and argon are used to decrease soot level in the flame. In this work, a CFD code has been developed to predict the flame height, soot volume fraction and soot number density in an axisymmetric laminar confined methane-air diffusion flame after diluting the fuel with nitrogen. The temperatures of the air and fuel at inlet are taken as 300K. Mass flow rate of the fuel stream is considered as 3.71×10−6 kg/s and mass flow rate of the air is taken as 2.2104×10−6 kg/s. The total mass flow rate through the central jet (fuel jet) is, however, kept constant. The radiation effect is also included through an optically thin radiation model. An explicit finite difference technique has been adopted for the numerical solution of reacting flow and two equations soot model with variable thermodynamic and transport properties. The prediction shows that flame height decreases with the addition of nitrogen to the fuel. Temperature of the flame is considerably reduced in the given computational domain. Both soot volume fraction and soot number density decrease with dilution by adding nitrogen in the fuel jet. The soot formation at different nitrogen dilution level of 0%, 10%, 20%, 30%, 40% and 50% are plotted and the soot get considerably reduced as the concentration of nitrogen is increased in the fuel stream.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
M. M. Ibrahim ◽  
A. Attia ◽  
A. Emara ◽  
H. A. Moneib

The present work is an experimental investigation that aims at studying the effects of different fuel additives on the soot volume fraction and temperature in a well-defined vertical laminar diffusion flame configuration, and these additives include a diluent (argon) that suppresses the formation of soot and a soot promoter (acetylene) that accelerates and intensifies the soot formation. Three different measuring techniques are employed throughout the whole experimental program, namely, a high-resolution digital camera (up to 3.7 fps) for flame visualization, a bare wire Pt/Pt-13% rhodium fine thermocouple of 15 µm wire diameter for measuring the mean gas temperature inside the flame region and a laser system for measuring the in-flame soot volume fraction. The results indicated that the soot inception zone (deep dark parabolic shape) occurs at the immediate vicinity of the burner. The soot oxidation zone is characterized by high luminosity, and it begins after the fuel is largely consumed. The increased percentages of acetylene in the fuel mixture would lead to extending the length of this zone to ultimately occupy the whole visible flame length, where the luminosity becomes independent of the amount of soot. The temperature within the soot surface growth zone (orange color) continues increasing but at a lower rate that reflects the domination of diffusion combustion mode. Limited partial oxidation may be anticipated within this zone due to the relatively high temperature, which is not high enough to cause luminosity of the soot particles.


Author(s):  
Hongsheng Guo ◽  
Fengshan Liu ◽  
Gregory J. Smallwood

The influence of hydrogen addition to the fuel on soot formation in an ethylene/oxygen/nitrogen diffusion flame was numerically studied by simulation of three counterflow laminar diffusion flames at atmosphere pressure. The fuel mixtures for the three flames are pure ethylene, ethylene/hydrogen and ethylene/helium, respectively, while the oxidant is a mixture of oxygen and nitrogen. A detailed gas phase reaction mechanism including species up to benzene and complex thermal and transport properties were used. The soot inception and surface growth rates were, respectively, calculated based on benzene and HACA (H-abstraction and C2H2-addition) mechanisms. The predicted results for the three flames were compared and analyzed. It is indicated that although the addition of either hydrogen or helium to the fuel can reduce the soot volume fraction, the addition of hydrogen is more efficient. While the addition of helium reduces soot formation only through dilution, the addition of hydrogen suppresses soot formation through both dilution and chemical reaction effects. This conclusion is qualitatively consistent with available experiments. The simulations revel that the chemically inhibiting effect is caused by the decrease of hydrogen atom concentration in soot formation region, due to the displacement of the primary reaction zone, when hydrogen is added to the fuel.


Author(s):  
R Sarlak ◽  
M Shams ◽  
R Ebrahimi

Combustion and soot formation in a turbulent diffusion flame are simulated. Chemistry of combustion is treated with a detailed reaction mechanism that employs 49 species and 277 reactions. Turbulence is taken into account via the corrected k–ε model. Radiation heat transfer from flame is modelled by the P-1 model. An empirical model proposed by Khan and Greeves and two semi-empirical models proposed by Tesner and Lindstedt are used to simulate the soot formation in the flame. Khan and Greeves model showed to underpredict the maximum soot volume fraction. Nevertheless, the main shortcoming of Khan and Greeves model which undermines the applicability of this model to prediction of soot formation in turbulent diffusion flames is the inability to locate the highly sooting regions of the flame properly. Tesner model underpredicts the soot formation significantly, although the predicted shapes of the soot profiles are in accordance with the experimental measurements. Lindstedt model performs well in predicting both the maximum soot formation and the soot profile shapes in the chamber. Therefore, Lindstedt model can be considered as the most suitable model for the prediction of soot formation in turbulent diffusion flames.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3671
Author(s):  
Subrat Garnayak ◽  
Subhankar Mohapatra ◽  
Sukanta K. Dash ◽  
Bok Jik Lee ◽  
V. Mahendra Reddy

This article presents the results of computations on pilot-based turbulent methane/air co-flow diffusion flames under the influence of the preheated oxidizer temperature ranging from 293 to 723 K at two operating pressures of 1 and 3 atm. The focus is on investigating the soot formation and flame structure under the influence of both the preheated air and combustor pressure. The computations were conducted in a 2D axisymmetric computational domain by solving the Favre averaged governing equation using the finite volume-based CFD code Ansys Fluent 19.2. A steady laminar flamelet model in combination with GRI Mech 3.0 was considered for combustion modeling. A semi-empirical acetylene-based soot model proposed by Brookes and Moss was adopted to predict soot. A careful validation was initially carried out with the measurements by Brookes and Moss at 1 and 3 atm with the temperature of both fuel and air at 290 K before carrying out further simulation using preheated air. The results by the present computation demonstrated that the flame peak temperature increased with air temperature for both 1 and 3 atm, while it reduced with pressure elevation. The OH mole fraction, signifying reaction rate, increased with a rise in the oxidizer temperature at the two operating pressures of 1 and 3 atm. However, a reduced value of OH mole fraction was observed at 3 atm when compared with 1 atm. The soot volume fraction increased with air temperature as well as pressure. The reaction rate by soot surface growth, soot mass-nucleation, and soot-oxidation rate increased with an increase in both air temperature and pressure. Finally, the fuel consumption rate showed a decreasing trend with air temperature and an increasing trend with pressure elevation.


2021 ◽  
Author(s):  
Nemanja Ceranic

Soot models have been investigated for several decades and many fundamental models exist that prescribe soot formation in agreement with experiments and theories. However, due to the complex nature of soot formation, not all pathways have been fully characterized. This work has numerically studied the influence that aliphatic based inception models have on soot formation for coflow laminar diffusion flames. CoFlame is the in-house parallelized FORTRAN code that was used to conduct this research. It solves the combustion fluid dynamic conservation equations for a variety of coflow laminar diffusion flames. New soot inception models have been developed for specific aliphatics in conjunction with polycyclic aromatic hydrocarbon based inception. The purpose of these models was not to be completely fundamental in nature, but more so a proof-of-concept in that an aliphatic based mechanism could account for soot formation deficiencies that exist with just PAH based inception. The aliphatic based inception models show potential to enhance predicative capability by increasing the prediction of the soot volume fraction along the centerline without degrading the prediction along the pathline of maximum soot. Additionally, the surface reactivity that was used to achieve these results lied closer in the range of numerically derived optimal values as compared to the surface reactivity that was needed to match peak soot concentrations without the aliphatic based inception models.


Author(s):  
Pravin Nakod ◽  
Saurabh Patwardhan ◽  
Ishan Verma ◽  
Stefano Orsino

Emission standard agencies are coming up with more stringent regulations on soot, given its adverse effect on human health. It is expected that Environmental Protection Agency (EPA) will soon place stricter regulations on allowed levels of the size of soot particles from aircraft jet engines. Since, aircraft engines operate at varying operating pressure, temperature and air-fuel ratios, soot fraction changes from condition to condition. Computation Fluid Dynamics (CFD) simulations are playing a key role in understanding the complex mechanism of soot formation and the factors affecting it. In the present work, soot formation prediction from numerical analyses for turbulent kerosene-air diffusion jet flames at five different operating pressures in the range of 1 atm. to 7 atm. is presented. The geometrical and test conditions are obtained from Young’s thesis [1]. Coupled combustion-soot simulations are performed for all the flames using steady diffusion flamelet model for combustion and Mass-Brookes-Hall 2-equation model for soot with a 2D axisymmetric mesh. Combustion-Soot coupling is required to consider the effect of soot-radiation interaction. Simulation results in the form of axial and radial profiles of temperature, mixture fraction and soot volume fraction are compared with the corresponding experimental measured profiles. The results for temperature and mixture fraction compare well with the experimental profiles. Predicted order of magnitude and the profiles of the soot volume fraction also compare well with the experimental results. The correct trend of increasing the peak soot volume fraction with increasing the operating pressure is also captured.


Author(s):  
Kevin Torres Monclard ◽  
Olivier Gicquel ◽  
Ronan Vicquelin

Abstract The effect of soot radiation modeling, pressure, and level of soot volume fraction are investigated in two ethylene-air turbulent flames: a jet flame at atmospheric pressure studied at Sandia, and a confined pressurized flame studied at DLR. Both cases have previously been computed with large-eddy simulations coupled with thermal radiation. The present study aims at determining and analyzing the thermal radiation field for different models from these numerical results. A Monte-Carlo solver based on the Emission Reciprocity Method is used to solve the radiative transfer equation with detailed gas and soot properties in both configurations. The participating gases properties are described by an accurate narrowband ck model. Emission, absorption, and scattering from soot particles are accounted for. Two formulations of the soot refractive index are considered: a constant value and a wavelength formulation dependency. This is combined with different models for soot radiative properties: gray, Rayleigh theory, Rayleigh-Debye-Gans theory for fractal aggregates. The effects of soot radiative scattering is often neglected since their contribution is expected to be small. This contribution is determined quantitatively in different scenarios, showing great sensitivity to the soot particles morphology. For the same soot volume fraction, scattering from larger aggregates is found to modify the radiative heat transfer noticeably. Such a finding outlines the need for detailed information on soot particles. Finally, the role of soot volume fraction and pressure on radiative interactions between both solid and gaseous phases is investigated.


2021 ◽  
Author(s):  
Mingshan Sun ◽  
Zhiwen Gan

Abstract The hydrogen addition is a potential way to reduce the soot emission of aviation kerosene. The current study analyzed the effect of hydrogen addition on aviation kerosene (Jet A1) soot formation in a laminar flame at elevated pressure to obtain a fundamental understanding of the reduced soot formation by hydrogen addition. The soot formation of flame was simulated by CoFlame code. The soot formation of kerosene-nitrogen-air, (kerosene + replaced hydrogen addition)-nitrogen-air, (kerosene + direct hydrogen addition)-nitrogen-air and (kerosene + direct nitrogen addition)-nitrogen-air laminar flames were simulated. The calculated pressure includes 1, 2 and 5 atm. The hydrogen addition increases the peak temperature of Jet A1 flame and extends the height of flame. The hydrogen addition suppresses the soot precursor formation of Jet A1 by physical dilution effect and chemical inhibition effect, which weaken the poly-aromatic hydrocarbon (PAH) condensation process and reduce the soot formation. The elevated pressure significantly accelerates the soot precursor formation and increases the soot formation in flame. Meanwhile, the ratio of reduced soot volume fraction to base soot volume fraction by hydrogen addition decreases with the increase of pressure, indicating that the elevated pressure weakens the suppression effect of hydrogen addition on soot formation in Jet A1 flame.


Sign in / Sign up

Export Citation Format

Share Document