An Interval-Based Method for Workspace Analysis of Planar Flexure-Jointed Mechanism

2008 ◽  
Vol 131 (1) ◽  
Author(s):  
D. Oetomo ◽  
D. Daney ◽  
B. Shirinzadeh ◽  
J.-P. Merlet

This paper addresses the problem of certifying the performance of a precision flexure-based mechanism design with respect to the given constraints. Due to the stringent requirements associated with flexure-based precision mechanisms, it is necessary to be able to evaluate and certify the performance at the design stage, taking into account the possible sources of errors such as fabrication tolerances and the modeling inaccuracies in flexure joints. An interval-based method is proposed to certify whether various constraints are satisfied for all points within a required workspace. Unlike the finite-element methods that are commonly used today to evaluate a design, where material properties are used for evaluation on a point-to-point sampling basis, the proposed technique offers a wide range of versatility in the design criteria to be evaluated and the results are true for all continuous values within the certified range of the workspace. This paper takes a pedagogical approach in presenting the interval-based methodologies and the implementation on a planar 3revolute-revolute-revolute (RRR) parallel flexure-based manipulator.

2021 ◽  
Vol 263 (3) ◽  
pp. 3454-3458
Author(s):  
Hasan Pasha ◽  
Gil Jun Lee ◽  
Henry Zhang ◽  
Steve Hale ◽  
Santosh Kottalgi

For accurate prediction of E-motor noise and vibration performance at the design stage, it is important to model the E-Motor stator structural behavior with high fidelity. Orthotropic material properties have been widely used in practice to simulate laminated steel in the stator. In these models, material constants are calibrated to match natural frequencies of critical modes such as oval/triangle/square modes. Typically, identifying accurate material properties is a manual, time-consuming process, involving lots of trial and error. This study presents an automated workflow to calibrate the material properties for the stator with Ansys Mechanical and optiSLang. The developed workflow can track natural frequencies and corresponding mode shapes of critical modes, and adjust material constants automatically to find best material parameters for the given frequencies. It can rotate the mode shapes and find the orientation that gives best match to the measurements based on modal assurance criteria (MAC). This workflow has shown a good correlation between simulation and test in terms of natural frequencies and corresponding mode shapes for the stator of a switched reluctance motor (SRM). Such an automated workflow enables the fast, efficient material calibration process, therefore accurate electric powertrain NVH simulations.


Author(s):  
Michele Righi ◽  
Giacomo Moretti ◽  
David Forehand ◽  
Lorenzo Agostini ◽  
Rocco Vertechy ◽  
...  

AbstractDielectric elastomer generators (DEGs) are a promising option for the implementation of affordable and reliable sea wave energy converters (WECs), as they show considerable promise in replacing expensive and inefficient power take-off systems with cheap direct-drive generators. This paper introduces a concept of a pressure differential wave energy converter, equipped with a DEG power take-off operating in direct contact with sea water. The device consists of a closed submerged air chamber, with a fluid-directing duct and a deformable DEG power take-off mounted on its top surface. The DEG is cyclically deformed by wave-induced pressure, thus acting both as the power take-off and as a deformable interface with the waves. This layout allows the partial balancing of the stiffness due to the DEG’s elasticity with the negative hydrostatic stiffness contribution associated with the displacement of the water column on top of the DEG. This feature makes it possible to design devices in which the DEG exhibits large deformations over a wide range of excitation frequencies, potentially achieving large power capture in a wide range of sea states. We propose a modelling approach for the system that relies on potential-flow theory and electroelasticity theory. This model makes it possible to predict the system dynamic response in different operational conditions and it is computationally efficient to perform iterative and repeated simulations, which are required at the design stage of a new WEC. We performed tests on a small-scale prototype in a wave tank with the aim of investigating the fluid–structure interaction between the DEG membrane and the waves in dynamical conditions and validating the numerical model. The experimental results proved that the device exhibits large deformations of the DEG power take-off over a broad range of monochromatic and panchromatic sea states. The proposed model demonstrates good agreement with the experimental data, hence proving its suitability and effectiveness as a design and prediction tool.


2015 ◽  
Vol 35 (4) ◽  
pp. 341-347 ◽  
Author(s):  
E. Rouhani ◽  
M. J. Nategh

Purpose – The purpose of this paper is to study the workspace and dexterity of a microhexapod which is a 6-degrees of freedom (DOF) parallel compliant manipulator, and also to investigate its dimensional synthesis to maximize the workspace and the global dexterity index at the same time. Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Design/methodology/approach – Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Findings – It has been shown that the proposed procedure for the workspace calculation can considerably speed the required calculations. The optimization results show that a converged-diverged configuration of pods and an increase in the difference between the moving and the stationary platforms’ radii cause the global dexterity index to increase and the workspace to decrease. Originality/value – The proposed algorithm for the workspace analysis is very important, especially when it is an objective function of an optimization problem based on the search method. In addition, using screw theory can simply construct the homogeneous Jacobian matrix. The proposed methodology can be used for any other micromanipulator.


Author(s):  
I Bridle ◽  
S R Woodhead

Degradation of bulk solid product during pneumatic conveying is of concern in a range of process industries. However, prediction of product degradation levels at the conveyor design stage has proved challenging. This paper presents a proposed prediction technique, based on the use of a pilot-sized test facility to provide relevant empirical data. The results of experiments undertaken using malted barley, basmati rice, and granulated sugar are reported. For each bulk solid material, a wide range of conveying conditions have been examined, consistent with common industrial practice. Correlations between predictions and experimental data obtained in an industrial-scale conveyor are presented and discussed.


Author(s):  
X. Lachenal ◽  
P. M. Weaver ◽  
S. Daynes

Conventional shape-changing engineering structures use discrete parts articulated around a number of linkages. Each part carries the loads, and the articulations provide the degrees of freedom of the system, leading to heavy and complex mechanisms. Consequently, there has been increased interest in morphing structures over the past decade owing to their potential to combine the conflicting requirements of strength, flexibility and low mass. This article presents a novel type of morphing structure capable of large deformations, simply consisting of two pre-stressed flanges joined to introduce two stable configurations. The bistability is analysed through a simple analytical model, predicting the positions of the stable and unstable states for different design parameters and material properties. Good correlation is found between experimental results, finite-element modelling and predictions from the analytical model for one particular example. A wide range of design parameters and material properties is also analytically investigated, yielding a remarkable structure with zero stiffness along the twisting axis.


Optics ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 25-42
Author(s):  
Ioseph Gurwich ◽  
Yakov Greenberg ◽  
Kobi Harush ◽  
Yarden Tzabari

The present study is aimed at designing anti-reflective (AR) engraving on the input–output surfaces of a rectangular light-guide. We estimate AR efficiency, by the transmittance level in the angular range, determined by the light-guide. Using nano-engraving, we achieve a uniform high transmission over a wide range of wavelengths. In the past, we used smoothed conical pins or indentations on the faces of light-guide crystal as the engraved structure. Here, we widen the class of pins under consideration, following the physical model developed in the previous paper. We analyze the smoothed pyramidal pins with different base shapes. The possible effect of randomization of the pins parameters is also examined. The results obtained demonstrate optimized engraved structure with parameters depending on the required spectral range and facet format. The predicted level of transmittance is close to 99%, and its flatness (estimated by the standard deviation) in the required wavelengths range is 0.2%. The theoretical analysis and numerical calculations indicate that the obtained results demonstrate the best transmission (reflection) we can expect for a facet with the given shape and size for the required spectral band. The approach is equally useful for any other form and of the facet. We also discuss a simple way of comparing experimental and theoretical results for a light-guide with the designed input and output features. In this study, as well as in our previous work, we restrict ourselves to rectangular facets. We also consider the limitations on maximal transmission produced by the size and shape of the light-guide facets. The theoretical analysis is performed for an infinite structure and serves as an upper bound on the transmittance for smaller-size apertures.


Synlett ◽  
2017 ◽  
Vol 29 (04) ◽  
pp. 433-439 ◽  
Author(s):  
Scott Denmark ◽  
Dietrich Böse

The development of catalytic, enantioselective halofunctionalizations of unactivated alkenes has made significant progress in recent years. However, the identification of generally applicable catalysts for wide range of substrates has yet to be realized. A detailed understanding of the reaction mechanism is essential to guide the formulation of a truly general catalyst. Herein, we present our investigations on the enantiodetermining step of a Lewis base catalyzed bromocycloetherification that provides important insights and design criteria.


Author(s):  
Bin Wang ◽  
Haocen Zhao ◽  
Ling Yu ◽  
Zhifeng Ye

It is usual that fuel system of an aero-engine operates within a wide range of temperatures. As a result, this can have effect on both the characteristics and precision of fuel metering unit (FMU), even on the performance and safety of the whole engine. This paper provides theoretical analysis of the effect that fluctuation of fuel temperature has on the controllability of FMU and clarifies the drawbacks of the pure mathematical models considering fuel temperature variation for FMU. Taking the electrohydraulic servovalve-controlled FMU as the numerical study, simulation in AMESim is carried out by thermal hydraulic model under the temperatures ranged from −10 to 60 °C to confirm the effectiveness and precision of the model on the basis of steady-state and dynamic characteristics of FMU. Meanwhile, the FMU testing workbench with temperature adjustment device employing the fuel cooler and heater is established to conduct an experiment of the fuel temperature characteristics. Results show that the experiment matches well with the simulation with a relative error no more than 5% and that 0–50 °C fuel temperature variation produces up to 5.2% decrease in fuel rate. In addition, step response increases with the fuel temperature. Fuel temperature has no virtual impact on the steady-state and dynamic characteristics of FMU under the testing condition in this paper, implying that FMU can operate normally in the given temperature range.


2021 ◽  
Author(s):  
Robert Sprenkle ◽  
Luciano Silvestri ◽  
M. S. Murillo ◽  
Scott Bergeson

Abstract New facilities such as the National Ignition Facility and the Linac Coherent Light Source have pushed the frontiers of high energy-density matter. These facilities offer unprecedented opportunities for exploring extreme states of matter, ranging from cryogenic solid-state systems to hot, dense plasmas, with applications to inertial-confinement fusion and astrophysics. However, significant gaps in our understanding of material properties in these rapidly evolving systems still persist. In particular, non-equilibrium transport properties of strongly-coupled Coulomb systems remain an open question. Here, we study ion-ion temperature relaxation in a binary mixture, exploiting a recently-developed dual-species ultracold neutral plasma. We compare measured relaxation rates with atomistic simulations and a range of popular theories. Our work validates the assumptions and capabilities of the simulations and invalidates theoretical models in this regime. This work illustrates an approach for precision determinations of detailed material properties in Coulomb mixtures across a wide range of conditions.


Sign in / Sign up

Export Citation Format

Share Document