Three-Dimensional Dynamic Response of Buried Pipelines to Incident Longitudinal and Shear Waves

1985 ◽  
Vol 52 (4) ◽  
pp. 919-926 ◽  
Author(s):  
S. K. Datta ◽  
P. M. O’Leary ◽  
A. H. Shah

An exact analysis is presented here for the three-dimensional dynamics of a long continuous pipeline embedded in an elastic medium. A shell model of the pipe has been used here. It is shown that the dynamic amplification of axial and hoop stresses induced in the pipe due to incident plane longitudinal and shear waves depends crucially on the ratio of rigidities of the surrounding soil and the pipe. Induced stresses are also found to have appreciable frequency dependence for certain combinations of material properties and angles of incidence. Results presented here are also applicable to buried tunnels.

1985 ◽  
Vol 107 (1) ◽  
pp. 44-50 ◽  
Author(s):  
P. M. O’Leary ◽  
S. K. Datta

A long wavelength and low-frequency analysis is presented here for the dynamic behavior of a long continuous pipeline embedded in an elastic medium. Using a shell model for the pipe, it is shown that the dynamic amplification of axial and hoop stresses induced in the pipe due to traveling plane waves (longitudinal and shear) depends crucially on the ratio of the rigidities of the surrounding soil and the pipe. Results are presented showing the dependence of the induced stresses on the direction of propagation of the incident waves, the Poisson’s ratios and rigidities of the ground and pipe materials.


2005 ◽  
Vol 33 (4) ◽  
pp. 210-226 ◽  
Author(s):  
I. L. Al-Qadi ◽  
M. A. Elseifi ◽  
P. J. Yoo ◽  
I. Janajreh

Abstract The objective of this study was to quantify pavement damage due to a conventional (385/65R22.5) and a new generation of wide-base (445/50R22.5) tires using three-dimensional (3D) finite element (FE) analysis. The investigated new generation of wide-base tires has wider treads and greater load-carrying capacity than the conventional wide-base tire. In addition, the contact patch is less sensitive to loading and is especially designed to operate at 690kPa inflation pressure at 121km/hr speed for full load of 151kN tandem axle. The developed FE models simulated the tread sizes and applicable contact pressure for each tread and utilized laboratory-measured pavement material properties. In addition, the models were calibrated and properly validated using field-measured stresses and strains. Comparison was established between the two wide-base tire types and the dual-tire assembly. Results indicated that the 445/50R22.5 wide-base tire would cause more fatigue damage, approximately the same rutting damage and less surface-initiated top-down cracking than the conventional dual-tire assembly. On the other hand, the conventional 385/65R22.5 wide-base tire, which was introduced more than two decades ago, caused the most damage.


2019 ◽  
Vol 11 (6) ◽  
pp. 168781401985284
Author(s):  
Meiliang Wang ◽  
Mingjun Wang ◽  
Xiaobo Li

The use of the traditional fabric simulation model evidently shows that it cannot accurately reflect the material properties of the real fabric. This is against the background that the simulation result is artificial or an imitation, which leads to a low simulation equation. In order to solve such problems from occurring, there is need for a novel model that is designed to enhance the essential properties required for a flexible fabric, the simulation effect of the fabric, and the efficiency of simulation equation solving. Therefore, the improvement study results will offer a meaningful and practical understanding within the field of garment automation design, three-dimensional animation, virtual fitting to mention but a few.


i-Perception ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 204166952098231
Author(s):  
Masakazu Ohara ◽  
Juno Kim ◽  
Kowa Koida

Perceiving the shape of three-dimensional objects is essential for interacting with them in daily life. If objects are constructed from different materials, can the human visual system accurately estimate their three-dimensional shape? We varied the thickness, motion, opacity, and specularity of globally convex objects rendered in a photorealistic environment. These objects were presented under either dynamic or static viewing condition. Observers rated the overall convexity of these objects along the depth axis. Our results show that observers perceived solid transparent objects as flatter than the same objects rendered with opaque reflectance properties. Regional variation in local root-mean-square image contrast was shown to provide information that is predictive of perceived surface convexity.


2013 ◽  
Vol 703 ◽  
pp. 200-203
Author(s):  
Shao Biao Cai ◽  
Yong Li Zhao

This study presents a first attempt to develop a numerical three-dimensional multilayered (more than 2 composite layered coatings) elasticperfectly plastic rough solids model to investigate the contact behavior under combined normal loading and tangential traction. Contact analyses are performed to study the effects composite thin film layers. Local contact pressure profiles, von Mises stresses, and shear stresses as a function of material properties and applied normal and tangential friction loads are calculated.


Author(s):  
Joonas Ponkala ◽  
Mohsin Rizwan ◽  
Panos S. Shiakolas

The current state of the art in coronary stent technology, tubular structures used to keep the lumen open, is mainly populated by metallic stents coated with certain drugs to increase biocompatibility, even though experimental biodegradable stents have appeared in the horizon. Biodegradable polymeric stent design necessitates accurate characterization of time dependent polymer material properties and mechanical behavior for analysis and optimization. This manuscript presents the process for evaluating material properties for biodegradable biocompatible polymeric composite poly(diol citrate) hydroxyapatite (POC-HA), approaches for identifying material models and three dimensional solid models for finite element analysis and fabrication of a stent. The developed material models were utilized in a nonlinear finite element analysis to evaluate the suitability of the POC-HA material for coronary stent application. In addition, the advantages of using femtosecond laser machining to fabricate the POC-HA stent are discussed showing a machined stent. The methodology presented with additional steps can be applied in the development of a biocompatible and biodegradable polymeric stents.


2017 ◽  
Vol 107 (10) ◽  
pp. 714-718
Author(s):  
P. Prof. Groche ◽  
W. Franke ◽  
A. Ackermann

Ein breiterer Einsatz von Papier könnte sich auf die Umweltbilanz zahlreicher Branchen zum Beispiel der Verpackungsindustrie positiv auswirken. Allerdings stehen der Umsetzung zahlreiche Herausforderungen im Wege. Bei der umformtechnischen Herstellung dreidimensionaler Produkte aus Papier erfordern insbesondere die anisotropen Werkstoffeigenschaften geeignete Maßnahmen. Dieser Fachbeitrag zeigt, wie durch gezielte, lokal angepasste Werkzeugtemperierung die Maßhaltigkeit der Produkte zu verbessern ist.   A broad use of paper could improve the life cycle assessment of industry sectors like the packaging industry. However, there are many obstacles to the application. Especially the anisotropic material properties need suitable measures to the forming manufacturing of three-dimensional products made of paper. This article presents how to improve the size accuracy of products made of paper by the use of targeted, locally heated tools.


Author(s):  
Judith L. Rochat ◽  
Victor W. Sparrow

Abstract Although realistic complex structures are usually difficult to model theoretically, fuzzy structure theory enables one to produce such a model without a detailed knowledge of the entire structure. Using the theory established by Pierce et al. [A. D. Pierce, V. W. Sparrow, and D. A. Russell, J. Vib. Acoust. (to be published), also ASME 93-WA/NCA-17.] regarding fundamental structural-acoustic idealizations for structures with imprecisely known or fuzzy internals, the effects that fuzzy attachments have on different wave types in a primary (or master) structure are examined in this paper. In the theory by Pierce et al., the primary structure that undergoes vibrations is a thin plate mounted in an infinite baffle. On one side of the plate are fuzzy attachments, represented as an array of attached mass-spring-dashpot systems, which are excited by an incident plane pulse. This known theory explains the effects of these attachments on bending waves in the plate. In this paper, the theory is extended to isolated compressional and shear waves in a plate. While studying this new problem, it is discovered that coupling effects occur when the plate and attachment properties are not uniform in the direction perpendicular to the wave propagation. Hence, unlike the bending wave theory which models a finite thin plate with point attached oscillators, the new wave type theory uses a thin plate infinite in one direction with line attached oscillators also infinite in the same direction. For both the compressional and shear waves, it is found that the fuzzy attachments add an apparent frequency dependent mass and damping to the plate. These results are similar to those for the bending wave theory.


Sign in / Sign up

Export Citation Format

Share Document