Nonlinear Response of Short Squeeze Film Dampers

1980 ◽  
Vol 102 (1) ◽  
pp. 51-58 ◽  
Author(s):  
D. L. Taylor ◽  
B. R. K. Kumar

This paper considers the methodology of numerical integration for prediction of dynamic response of squeeze film damper systems. A planar rotor carried in a squeeze film damper with linear centering spring is considered. Governing differential equations are expressed in polar coordinates, and fluid forces are obtained from the Ocvirk short bearing integrals. The rotating unbalance response is presented as a function of speed, unbalance, and a bearing parameter. Runge Kutta integration techniques are used to obtain numerical solutions for transient response and frequency response. The 2π film approximation results in almost linear frequency response curves. However, the π film response is very nonlinear, demonstrating the well known multiple valued response and associated hardening jump/drop phenomenon. The π film transient response is analyzed within the speed range of bistable operation to determine the effects of initial conditions, the domains of convergence, and the relative strengths of stability of each solution. The transient response is found to be most sensitive to initial values of phase angle and phase angle velocity. Initial eccentricity and eccentric velocity are much less important. In general, of the two steady state solutions, the one with lower eccentricity appears to be more stable, with a larger domain of convergence. Examples show how premature termination of the integration can lead to erroneous conclusions.

2021 ◽  
Author(s):  
Ying Cui ◽  
Yuxi Huang ◽  
Guogang Yang ◽  
Yongliang Wang ◽  
Han Zhang

Abstract A nonlinear multi-degree-of-freedom dynamic model of a coupled dual-rotor system with an intershaft bearing and uncentralized squeeze film damper is established by using finite element method. Based on the model, the critical speed characteristic diagram and vibration modes of the system were calculated. The steady-state unbalance response is obtained by using Newmark-β algorithm. The numerical results show the effect of SFD position in the dual-rotor system on response amplitude. It is found that with the decrease of radial clearance and the increase of length-diameter ratio and lubricating oil viscosity, the damping effect of SFD is enhanced and the bistable state phenomenon can be suppressed. The transient response of the system in case of sudden unbalance occurring at the fan was simulated by applying a step function. It is demonstrated that the SFD can effectively reduce the duration and maximum amplitude of the transient process, but at certain speeds, the SFD will increase the amplitude after the system returns to steady state, the damping effect on the transient response is also enhanced with the increase of length-diameter and the decrease of radial clearance, and with the increase of the sudden unbalance value, the response is more likely to stabilized at the high amplitude state of the bistable state.


Author(s):  
Qihan Li ◽  
James F. Hamilton

A method is presented for calculating the dynamics of a dual-rotor gas turbine engine equipped with a flexible intershaft squeeze-film damper. The method is based on the functional expansion component synthesis method. The transient response of the rotor due to a suddenly applied unbalance in the high-pressure turbine under different steady-speed operations is calculated. The damping effects of the intershaft damper and stability of the rotor system are investigated.


Author(s):  
J X Zhang

Approximate expressions are obtained for static fluid pressure and force for a centrally grooved squeeze film damper (SFD) resting at an equilibrium position without vibration. The analysis shows that, to some extent, grooved SFDs may share some characteristics with hydrostatic bearings, due to the existence of the lubricant supply pressure. Thus static fluid force and hence oil stiffness may exist in SFDs, in addition to the conventional inertial and damping coefficients for SFDs. This paper is solely focused on the static fluid forces and oil stiffness generated in an SFD with a finite length groove. Flow continuity is used at the centre of the groove, which takes into account the effects of the inlet oil flowrate and oil supply pressure. This use of flow continuity differs substantially from the traditional use of constant pressure in the central groove, and it provides better results. At the interface between the groove and the thin film land, a step bearing model with ignored fluid inertia is employed. It is verified by both the theory and previous experiments that the static fluid force and stiffness are linearly proportional to both the lubricant supply pressure and the eccentricity ratio of the SFD journal.


2015 ◽  
Vol 23 (11) ◽  
pp. 1792-1808 ◽  
Author(s):  
Mostafa Irannejad ◽  
Abdolreza Ohadi

Squeeze film dampers are widely used to reduce the vibration of rotating systems. Using magnetorheological fluid in these dampers can lead to a variable-damping damper called Magnetorheological Squeeze Film Damper (MRSFD). Magnetorheological fluid viscosity alter under different values of magnetic field. The previous research have widely used long bearing approximation to derive the equations governing the hydrodynamic behavior of MRSFDs. In this paper, the behavior of MRSFDs has been studied using short bearing approximation. Next, the effects of MRSFDs on the dynamic behavior of a flexible rotor have been studied, using finite element method (FEM). Synchronous whirl motion has not been imposed on the system behavior, as an external assumption. Damper pressure distribution and forces, dynamic trajectories, eccentricity and the frequency response of the rotor are tools used to analyze the dynamic behavior of MRSFDs and rotor system. As the results show, it seems to be more precise to use short bearing approximation to analyze dampers with aspect ratios lower than a limit (especially L/D < 1). Furthermore, by controlling electrical current one can control the dynamic behavior of a rotor, to avoid failure and damage. Finally, the whirl motion of the rotor was observed to remain synchronous, even when fluid forces are present.


1988 ◽  
Vol 110 (1) ◽  
pp. 51-57 ◽  
Author(s):  
L. A. San Andres ◽  
J. M. Vance

The effect of fluid inertia on the synchronous steady-state operation of a centrally preloaded single mass flexible rotor supported in squeeze film bearing dampers is examined theoretically. For a model representative of some aircraft engine applications, frequency response curves are presented exhibiting the effect of fluid inertia on rotor excursion amplitudes and imbalance transmissibilities for both pressurized and unpressurized short open-ended squeeze film damper supports. It is shown that a significant reduction in amplitude response and transmitted force is possible for dampers operating at moderately large squeeze film Reynolds numbers. Furthermore, for unpressurized dampers the possibilities of bistable operation and jump phenomena are shown to be reduced and virtually disappear at sufficiently large operating Reynolds numbers.


Author(s):  
G. Meng ◽  
L. A. San Andres ◽  
J. M. Vance

Abstract The influence of rotational speed, oil temperature and supply pressure on the squeeze film pressure and fluid forces is investigated experimentally for a partially sealed squeeze film damper (SFD) test rig executing circular centered orbits. Experimental Tesults show that the sealed damper produces higher damping forces than an open end SFD, though it is more prone to produce oil cavitation. As a result, the peak-to-peak pressures and the tangential force (damping force) decrease with increasing rotational speed; while, the radial force (stiffhening force) becomes negative due to the large extent of the cavitation zone. The tangential force decreases and the radial force increases with increasing lubricant temperature. The squeeze film pressure and film force increase as the supply pressure rises. The film cavitation onset is determined by the level of supply pressure and rotational speed.


Author(s):  
D. X. Cao ◽  
S. Leadenham ◽  
A. Erturk

The transformation of waste vibration energy into low-power electricity has been heavily researched to enable self-sustained wireless electronic components. Monostable and bistable nonlinear oscillators have been explored by several researchers in an effort to enhance the frequency bandwidth of operation. Linear two degree of freedom (2-DOF) configurations as well as combination of a nonlinear single-DOF harvester with a linear oscillator to constitute a nonlinear 2-DOF harvester have also been explored to develop broadband energy harvesters. In the present work, the concept of nonlinear internal resonance in a continuous frame structure is explored for broadband energy harvesting. The L-shaped beam-mass structure with quadratic nonlinearity was formerly studied in the nonlinear dynamics literature to demonstrate modal energy exchange and the saturation phenomenon when carefully tuned for two-to-one internal resonance. In the current effort, piezoelectric coupling is introduced, and electromechanical equations of the L-shaped energy harvester are employed to explore the primary resonance behaviors around the first and the second linear natural frequencies for bandwidth enhancement. Simulations using approximate analytical frequency response equations as well as time-domain numerical solutions reveal that 2-DOF configuration with quadratic and two-to-one internal resonance could extend the bandwidth enhancement capability. Both electrical power and shunted vibration frequency response curves of steady-state solutions are explored in detail. Effects of various electromechanical system parameters, such as piezoelectric coupling and load resistance, on the overall dynamics of the internal resonance energy harvesting system are reported.


1997 ◽  
Vol 30 (10) ◽  
pp. 733-738 ◽  
Author(s):  
Tan Qingchang ◽  
Li Wei ◽  
Zhang Jun

Author(s):  
Takashi Ikeda ◽  
Yuji Harata ◽  
Keisuke Nishimura

Intrinsic localized modes (ILMs) are investigated in an array with N Duffing oscillators that are weakly coupled with each other when each oscillator is subjected to sinusoidal excitation. The purpose of this study is to investigate the behavior of ILMs in nonlinear multi-degree-of-freedom (MDOF) systems. In the theoretical analysis, van der Pol's method is employed to determine the expressions for the frequency response curves for fundamental harmonic oscillations. In the numerical calculations, the frequency response curves are shown for N = 2 and 3 and compared with the results of the numerical simulations. Basins of attraction are shown for a two-oscillator array with hard-type nonlinearities to examine the possibility of appearance of ILMs when an oscillator is disturbed. The influences of the connecting springs for both hard- and soft-type nonlinearities on the appearance of the ILMs are examined. Increasing the values of the connecting spring constants may cause Hopf bifurcation followed by amplitude modulated motion (AMM) including chaotic vibrations. The influence of the imperfection of an oscillator is also investigated. Bifurcation sets are calculated to show the influence of the system parameters on the excitation frequency range of ILMs. Furthermore, time histories are shown for the case of N = 10, and many patterns of ILMs may appear depending on the initial conditions.


Author(s):  
L. Moraru ◽  
T. G. Keith ◽  
F. Dimofte ◽  
S. Cioc ◽  
N. Ene ◽  
...  

Squeeze film dampers (SFD) are devices utilized to control the shafts of high-speed rotating machinery. A dual squeeze film damper (DSFD) consists of two squeeze film bearings that are separated by a sleeve, which is released when the rotor experiences abnormal operating conditions. In this part of our study of DSFD we analyze the case when both the inner and the outer oil films are active. We present computed and measured unbalance responses of a shaft supported in DSFD. The oil forces which are utilized in the calculation of the unbalance response are obtained from numerical solutions of the Reynolds equation. A finite-difference algorithm is utilized for solving the pressure equation within the calculation of the dynamic response of the shaft.


Sign in / Sign up

Export Citation Format

Share Document