Characteristics of Externally Pressurized Journal Bearings with Membrane-Type Variable-Flow Restrictors as Compensating Elements

1974 ◽  
Vol 188 (1) ◽  
pp. 527-536 ◽  
Author(s):  
C. Cusano Ms

The characteristics of externally pressurized journal bearings with four recesses and with membrane-type variable-flow restrictors as compensating elements are analytically investigated by using the bearing model of Raimondi and Boyd. The effects of the ratio of the recess pressure at zero eccentricity to the supply pressure (pressure ratio), the eccentricity ratio, the compliance of the membrane and the shaft rotation on the lubricant flow rate, the load capacity and the stiffness of these bearings are presented for a given aspect ratio and inter-recess*** land width-to-diameter ratio. For a non-rotating shaft, it is shown that when the bearing operates at zero eccentricity there is a pressure ratio that gives an optimum bearing stiffness. This pressure ratio is a function of the aspect ratio of the bearing only. Using this pressure ratio, data for the load capacity and stiffness of the bearing are presented for an eccentricity ratio that varies from 0 to 0·1. For these data, the membrane compliances used are those that would give an infinite bearing stiffness if the bearing were operating at zero eccentricity.

1969 ◽  
Vol 184 (1) ◽  
pp. 827-838 ◽  
Author(s):  
P. B. Davies

A number of assumptions enable the effects of both pressure and velocity induced flow between adjacent recesses to be included in an analysis of multi-recess hydrostatic journal bearings. Consideration of the rate of energy dissipation within a bearing enables an optimum speed variable to be defined which relates the speed of shaft rotation to the other describing parameters involved. The behaviour of a particular orifice compensated bearing of high aspect ratio was investigated at large values of eccentricity ratio and it was revealed that considerable interaction occurred between the recesses. The performance of the bearing was found to be determined jointly by its pressure ratio, speed variable and, significantly, the direction of loading. Considerable variations inload capacity occurred with changes in these parameters and it is shown that the range of operation of multi-recess bearings may be limited as some recess pressures may drop to the ambient pressure. The application of these results to practical designs is suggested.


1974 ◽  
Vol 96 (1) ◽  
pp. 226-232 ◽  
Author(s):  
C. Cusano ◽  
T. F. Conry

The design problem is formulated for multi-recess hydrostatic journal bearings with a design criterion of minimum total power loss. The design is subject to the constraints of constant ratio of the recess area to the total bearing area and maximum load capacity for a given recess geometry. The L/D ratio, eccentricity ratio, ratio of recess area to total bearing area, and shaft rotational speed are considered as parameters. The analysis is based on the bearing model of Raimondi and Boyd [1]. This model is generally valid for low-to-moderate speeds and a ratio of recess area-to-total bearing area of approximately 0.5 or greater. Design charts are presented for bearings having a ratio of recess area-to-total bearing area of 0.6 and employing capillary and orifice restrictors, these being the most common types of compensating elements. A design example is given to illustrate the use of the design charts.


1972 ◽  
Vol 94 (1) ◽  
pp. 69-73 ◽  
Author(s):  
C. Cusano

An analytical solution for the performance characteristics of finite porous journal bearings is obtained. Results are presented which relate the eccentricity ratio and coefficient of friction as functions of load number for design variables of 0.0001, 0.001, 0.01, and 0.1. The load capacity obtained by using the finite bearing theory is compared to the load capacity obtained by using the short-bearing approximation and the infinite-bearing approximation.


Author(s):  
J. L. Nikolajsen ◽  
D. Dong ◽  
M. J. Goodwin

Preliminary measurements have been conducted to determine the effect of oil aeration on journal bearing performance. Oil aeration was observed to reduce the bearing load capacity and to increase the bearing stiffness. Also, the bearing damping capacity was improved significantly by oil aeration.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Hui-Hui Feng ◽  
Chun-Dong Xu ◽  
Jie Wan

The water-lubricated bearings have been paid attention for their advantages to reduce the power loss and temperature rise and increase load capacity at high speed. To fully study the complete dynamic coefficients of two water-lubricated, hydrostatic journal bearings used to support a rigid rotor, a four-degree-of-freedom model considering the translational and tilting motion is presented. The effects of tilting ratio, rotary speed, and eccentricity ratio on the static and dynamic performances of the bearings are investigated. The bulk turbulent Reynolds equation is adopted. The finite difference method and a linear perturbation method are used to calculate the zeroth- and first-order pressure fields to obtain the static and dynamic coefficients. The results suggest that when the tilting ratio is smaller than 0.4 or the eccentricity ratio is smaller than 0.1, the static and dynamic characteristics are relatively insensitive to the tilting and eccentricity ratios; however, for larger tilting or eccentricity ratios, the tilting and eccentric effects should be fully considered. Meanwhile, the rotary speed significantly affects the performance of the hydrostatic, water-lubricated bearings.


2014 ◽  
Vol 66 (2) ◽  
pp. 322-334 ◽  
Author(s):  
Yuan Kang ◽  
De-Xing Peng ◽  
Yu-Hong Hung ◽  
Sheng-Yan Hu ◽  
Chorng-Shyan Lin

Purpose – This article is the fourth part of a serial studies about constant and variable compensations of the closed-type hydrostatic plane-pad bearing, which is presented for the double-action membrane-type restrictor and self-type compensation. The paper aims to discuss these issues. Design/methodology/approach – The load capacity and static stiffness in thrust direction of the planar bearing is determined by the flow continuity equation which belongs to the same approaches as shown in previous parts of this serial studies. Findings – The results reveal that the appropriate range of recess pressure ratio and design parameters of bearing and restrictor for the infinite or maximum stiffness can be obtained. Also, the influence of design parameters on negative stiffness that should be avoided in bearing design is revealed in detail. Originality/value – The determination of design parameters of a double-action membrane-type restrictor can be yielded from finding results of this study for maximum stiffness in design of hydrostatic bearings.


1967 ◽  
Vol 89 (2) ◽  
pp. 154-165 ◽  
Author(s):  
J. W. Lund

A theoretical analysis is presented for the threshold of instability for a rigid rotor supported in hydrostatic gas journal bearings. Both rotationally induced instability (hybrid instability) and pneumatic hammer are considered. The analysis is based on a first-order perturbation with respect to the eccentricity ratio (i.e., the results are limited to small eccentricity ratios) and makes use of the linearized Ph-method [2, 5, 8]. The pressurized gas is supplied to the bearing through restricted feeding holes in the center plane of the bearing and the analysis takes into account the discreteness of the feeding holes, the feeder hole time constant, and inherent compensation effects. Numerical results are given in form of 16 graphs, showing the threshold of instability as a function of supply pressure ratio, feeding parameter and eccentricity ratio. Also, the effect of the feeder hole time constant is investigated with respect to pneumatic hammer.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Andres Clarens ◽  
Amir Younan ◽  
Shibo Wang ◽  
Paul Allaire

Lubricants are necessary in tilting-pad journal bearings to ensure separation between solid surfaces and to dissipate heat. They are also responsible for much of the undesirable power losses that can occur through a bearing. Here, a novel method to reduce power losses in tilting-pad journal bearings is proposed in which the conventional lubricant is substituted by a binary mixture of synthetic lubricant and dissolved CO2. These gas-expanded lubricants (GELs) would be delivered to a reinforced bearing housing capable of withstanding modest pressures less than 10 MPa. For bearings subject to loads that are both variable and predictable, GELs could be used to adjust lubricant properties in real time. High-pressure lubricants, mostly gases, have already been explored in tilting-pad journal bearings as a means to accommodate higher shaft speeds while reducing power losses and eliminating the potential for thermal degradation of the lubricant. These gas-lubricated bearings have intrinsic limitations in terms of bearing size and load capacity. The proposed system would combine the loading capabilities of conventional lubricated bearings with the efficiency of gas-lubricated bearings. The liquid or supercritical CO2 serves as a low-viscosity and completely miscible additive to the lubricant that can be easily removed by purging the gas after releasing the pressure. In this way, the lubricant can be fully recycled, as in conventional systems, while controlling the lubricant properties dynamically by adding liquid or supercritical CO2. Lubricant properties of interest, such as viscosity, can be easily tuned by controlling the pressure inside the bearing housing. Experimental measurements of viscosity for mixtures of polyalkylene glycol (PAG)+CO2 at various compositions demonstrate that significant reductions in mixture viscosity can be achieved with relatively small additions of CO2. The measured parameters are used in a thermoelastohydrodynamic model of tilting-pad journal bearing performance to evaluate the bearing response to GELs. Model estimates of power loss, eccentricity ratio, and pad temperature suggest that bearings would respond quite favorably over a range of speed and preload conditions. Calculated power loss reductions of 20% are observed when compared with both a reference petroleum lubricant and PAG without CO2. Pad temperature is also maintained without significant increases in eccentricity ratio. Both power loss and pad temperature are directly correlated with PAG-CO2 composition, suggesting that these mixtures could be used as “smart” lubricants responsive to system operating conditions.


2015 ◽  
Vol 642 ◽  
pp. 242-247
Author(s):  
Tze Chi Hsu ◽  
Jing Hong Chen ◽  
Tsu Liang Chou ◽  
Hsiu Lu Chiang

This study investigated the combined influence of stochastic surface roughness patterns and a magnetic field produced by an infinitely long wire on the distribution of hydrodynamic pressure in journal bearings lubricated with ferrofluids. According to our results, the magnetic field can raise the dimensionless pressure, improve the dimensionless load capacity and reduce the modified friction coefficient, especially at high eccentricity ratio. However, these bearing Characteristics are also influenced by surface roughness pattern depend on the length to diameter ratio λ, and the critical value of λ equal to 0.6, 0.95 and 1.8 in this study.


Sign in / Sign up

Export Citation Format

Share Document