The Influence of Lubricant Compressibility on the Performance of the 120 Degree Partial Journal Bearing

1967 ◽  
Vol 89 (4) ◽  
pp. 473-481 ◽  
Author(s):  
E. J. Gunter

This paper discusses the characteristics of the 120 deg bearing as the compressibility parameter Λ is increased from 0 to ∞. At low values of Λ and light loads, the gas bearing behaves as an incompressible lubricated bearing. Curves are developed to show under what conditions of bearing loading, film thickness, and speed the partial gas bearing may be treated by the incompressible theory. The compressibility parameter Λ has a considerable effect on the proper selection of the shoe pivot position and bearing clearance ratio for both maximum load capacity and minimum coefficient of friction. It is shown that the bearing clearance ratio and pivot location can vary considerably and still maintain close to optimum conditions at low compressibility numbers. At higher compressibility numbers, the choice of pivot location has a substantial effect on the bearing load capacity and coefficient of friction. Also discussed are the optimum design ranges of the compressibility number Λ.

1968 ◽  
Vol 90 (1) ◽  
pp. 271-280 ◽  
Author(s):  
B. J. Hamrock

A linearized PH solution to the Reynolds equation was obtained while neglecting side leakage. The analysis was divided into two parts—the step and ridge regions. The pressure profile across the step and ridge region of the various pads which are placed around the journal was obtained from the linearized PH Reynolds equation. Knowing the pressure, the load components and attitude angle were calculated. The resulting equations were found to be a function of the bearing parameters (the eccentricity and compressibility number) and the step parameters (ratio of the stepped clearance to the ridge clearance, ratio of the angle extended by the ridge to the angle extended by the pad, and number of pads placed around the journal). The maximum load capacity can be determined by numerically differentiating the load with respect to the step bearing parameters while finding where the slope is zero. A series of data was run while varying the bearing parameters. The attitude angle was calculated for the various cases which were run.


1993 ◽  
Vol 8 (4) ◽  
pp. 231-239 ◽  
Author(s):  
Mousa Tabatabaei ◽  
Cedric Marsh

Ideally a space truss is composed of bars each of which is suited to the load it carries. In practice, however, it is more convenient to use a limited number of bar sizes, thus only a few of the members will be fully stressed when the maximum load capacity of the space truss is reached. In order to effect a more equitable distribution of forces between chords of equal size such that more chord members are loaded close to their capacity, selected diagonals are removed to control the path followed by the shear forces, and thereby control the forces entering the chords. In this paper the effect of diagonal removal on space trusses is demonstrated and a method for selection of the diagonals whose removal gives optimum increase in the load carrying capacity of a space truss is described.


1959 ◽  
Vol 81 (2) ◽  
pp. 245-252 ◽  
Author(s):  
F. W. Ocvirk ◽  
G. B. DuBois

A method of relating surface finish to minimum oil-film thickness and the corresponding load capacity of plain journal bearings is presented with supporting experimental data. The effect of clearance on load capacity and friction are shown on graphs indicating an optimum bearing clearance.


2021 ◽  
Vol 1199 (1) ◽  
pp. 012103
Author(s):  
D Wojtkowiak ◽  
K Talaśka ◽  
K Konecki

Abstract The ball screws are characterized with better positioning accuracy and higher efficiency and load ratings than the same size lead screw, but still cannot fully replace their functionality mostly due to the self-locking. Leads screws are recommended especially for such applications as grippers, lifters, presses and vertical positioning drives. By proper selection of the lead screw geometrical features and application of the modern materials, it is possible to obtain much more advantageous parameters of the drive system. In this paper, the methodology of optimization of the drive mechanism with lead screw using Isight software is presented. The performed sensitivity analysis allowed not only to find the influence of various constructional features such as: size of the thread, length of the screw and material properties, on the maximum load capacity of the drive mechanism and its inertia, but also determine its scale impact. The obtained results can improve the design process of lead screw mechanism.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1481-1488
Author(s):  
Tariq M. Hammza ◽  
Ehab N. Abas ◽  
Nassear R. Hmoad

The values of Many parameters which involve in the design of fluid film journal bearings mainly depend on the bearing applied load when using the conventional design method to design the journal bearings, in this study, as well as applied bearing load, the dynamic response and critical speed have been used to calculate the dimensions of journal bearings. In the field of rotating machine, especially a heavy-duty rotating machines, the critical speed and response are the main parameters that specify bearing dimensions. The bearing aspect ratio (bearing length to bore diameter) and bearing clearance have been determined based on rotor maximum critical speed and minimum response displacement. The analytical solution of rotor Eq. of motion was verified by numerical solution via using ANSYS Mechanical APDL 18.0 and by comparing the numerical solution with the preceding study. The final study results clearly showed that the bearing aspect ratio has little effect on the critical speed, but it has a high effect on the dynamic response also the bearing clearance has little effect on the critical speed and considerable effect on the dynamic response. The study showed that the more accurate values of bearing aspect ratio to make the response of rotor as low as possible are about 0.65 - 1 and bearing percent clearance is about 0.15 - 0.2 for different rotor dimensions.


Lubricants ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Eckhard Schüler ◽  
Olaf Berner

In high speed, high load fluid-film bearings, the laminar-turbulent flow transition can lead to a considerable reduction of the maximum bearing temperatures, due to a homogenization of the fluid-film temperature in radial direction. Since this phenomenon only occurs significantly in large bearings or at very high sliding speeds, means to achieve the effect at lower speeds have been investigated in the past. This paper shows an experimental investigation of this effect and how it can be used for smaller bearings by optimized eddy grooves, machined into the bearing surface. The investigations were carried out on a Miba journal bearing test rig with Ø120 mm shaft diameter at speeds between 50 m/s–110 m/s and at specific bearing loads up to 4.0 MPa. To investigate the potential of this technology, additional temperature probes were installed at the crucial position directly in the sliding surface of an up-to-date tilting pad journal bearing. The results show that the achieved surface temperature reduction with the optimized eddy grooves is significant and represents a considerable enhancement of bearing load capacity. This increase in performance opens new options for the design of bearings and related turbomachinery applications.


Lubricants ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 47
Author(s):  
Federico Colombo ◽  
Luigi Lentini ◽  
Terenziano Raparelli ◽  
Andrea Trivella ◽  
Vladimir Viktorov

Because of their distinctive characteristics, aerostatic bearings are particularly suitable for high-precision applications. However, because of the compressibility of the lubricant, this kind of bearing is characterized by low relative stiffness and poor damping. Compensation methods represent a valuable solution to these limitations. This paper presents a design procedure for passively compensated bearings controlled by diaphragm valves. Given a desired air gap height at which the system should work, the procedure makes it possible to maximize the stiffness of the bearing around this value. The designed bearings exhibit a quasi-static infinite stiffness for load variation ranging from 20% to almost 50% of the maximum load capacity of the bearing. Moreover, the influence of different parameters on the performance of the compensated pad is evaluated through a sensitivity analysis.


Machines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Svenja Kalt ◽  
Karl Ludwig Stolle ◽  
Philipp Neuhaus ◽  
Thomas Herrmann ◽  
Alexander Koch ◽  
...  

The consideration of the thermal behavior of electric machines is becoming increasingly important in the machine design for electric vehicles due to the adaptation to more dynamic operating points compared to stationary applications. Whereas, the dependency of machine efficiency on thermal behavior is caused due to the impact of temperature on the resulting loss types. This leads to a shift of efficiency areas in the efficiency diagram of electric machines and has a significant impact on the maximum load capability and an impact on the cycle efficiency during operation, resulting in a reduction in the overall range of the electric vehicle. Therefore, this article aims at analyzing the thermal load limits of induction machines in regard to actual operation using measured driving data of battery electric vehicles. For this, a thermal model is implemented using MATLAB® and investigations to the sensitivity of model parameters as well as analysis of the continuous load capacity, thermal load and efficiency in driving cycles under changing boundary conditions are conducted.


1967 ◽  
Vol 89 (2) ◽  
pp. 203-210 ◽  
Author(s):  
R. R. Donaldson

Reynolds’ equation for a full finite journal bearing lubricated by an incompressible fluid is solved by separation of variables to yield a general series solution. A resulting Hill equation is solved by Fourier series methods, and accurate eigenvalues and eigenvectors are calculated with a digital computer. The finite Sommerfeld problem is solved as an example, and precise values for the bearing load capacity are presented. Comparisons are made with the methods and numerical results of other authors.


Sign in / Sign up

Export Citation Format

Share Document