Natural Frequencies of Vibration of Fixed-Fixed Sandwich Beams

1961 ◽  
Vol 28 (3) ◽  
pp. 367-371 ◽  
Author(s):  
M. E. Raville ◽  
En-Shiuh Ueng ◽  
Ming-Min Lei

In this paper, the problem of the determination of the natural frequencies of vibration of fixed-fixed sandwich beams is analyzed by an energy approach in which the Lagrangian multiplier method is utilized to satisfy the boundary conditions of the problem. The solution is in the form of a rapidly converging infinite series. Experimental results are given for 21 sandwich beams having different dimensions and physical constants. Corresponding theoretical results, obtained by means of a digital computer, are in close agreement with the experimental results.

1971 ◽  
Vol 25 (2) ◽  
pp. 191-195
Author(s):  
I. A. Tamas ◽  
N. S. Urquhart ◽  
J. L. Ozbun

Response curves of CO2 were determined for Beckman ir gas analyzers (models 215 and 315A) by adding small, measured amounts of CO2 to a large volume of circulating N2. We deduce a mathematical model for the response curves, estimate their parameters from our data, and comment on the role of this model in computer processing of masses of data resulting from such instruments. Close agreement between our experimental and theoretical results suggest that our model and approach should apply to similar instruments.


2021 ◽  
pp. 096739112110576
Author(s):  
Rajeshkumar Selvaraj ◽  
Kamesh Gupta ◽  
Shubham Kumar Singh ◽  
Ankur Patel ◽  
Manoharan Ramamoorthy

This study investigates the free vibration responses of laminated composite sandwich beam with multi-cores using experimental and numerical methods. The laminated composite face sheets are made by using hand layup method. An experimental modal test has been carried for different configurations of multi-core sandwich beams under different end conditions. The single-core and multi-core sandwich beams has been modeled and the natural frequencies of sandwich beams are determined using ANSYS software. The numerical model is verified by comparing the obtained natural frequencies with experimental results. The numerical and experimental results indicate that the multi-core sandwich beam greatly influences the structural stiffness compared with single-core sandwich beam under different end conditions. Furthermore, the influence of several parameters such as the end conditions, thickness of the core layer, and stacking sequence on the natural frequencies of the various configurations of the multi-core sandwich beams are presented.


1985 ◽  
Vol 52 (4) ◽  
pp. 890-896 ◽  
Author(s):  
T. Irie ◽  
G. Yamada ◽  
Y. Muramoto

An analysis is presented for the free vibration of an elastically or a rigidly point-supported spherical shell. For this purpose, the deflection displacements of the shell are written in a series of the products of the associated Legendre functions and the trigonometric functions. The dynamical energies of the shell are evaluated, and the frequency equation is derived by the Ritz method. For a rigidly point-supported shell, the Lagrangian multiplier method is conveniently employed. The method is applied to a closed spherical shell supported at equispaced four points located along a parallel of latitude; the natural frequencies and the mode shapes are calculated numerically, and the effects of the point supports on the vibration are studied.


Author(s):  
Stuart McKernan

For many years the concept of quantitative diffraction contrast experiments might have consisted of the determination of dislocation Burgers vectors using a g.b = 0 criterion from several different 2-beam images. Since the advent of the personal computer revolution, the available computing power for performing image-processing and image-simulation calculations is enormous and ubiquitous. Several programs now exist to perform simulations of diffraction contrast images using various approximations. The most common approximations are the use of only 2-beams or a single systematic row to calculate the image contrast, or calculating the image using a column approximation. The increasing amount of literature showing comparisons of experimental and simulated images shows that it is possible to obtain very close agreement between the two images; although the choice of parameters used, and the assumptions made, in performing the calculation must be properly dealt with. The simulation of the images of defects in materials has, in many cases, therefore become a tractable problem.


2020 ◽  
Vol 835 ◽  
pp. 229-242
Author(s):  
Oboso P. Bernard ◽  
Nagih M. Shaalan ◽  
Mohab Hossam ◽  
Mohsen A. Hassan

Accurate determination of piezoelectric properties such as piezoelectric charge coefficients (d33) is an essential step in the design process of sensors and actuators using piezoelectric effect. In this study, a cost-effective and accurate method based on dynamic loading technique was proposed to determine the piezoelectric charge coefficient d33. Finite element analysis (FEA) model was developed in order to estimate d33 and validate the obtained values with experimental results. The experiment was conducted on a piezoelectric disc with a known d33 value. The effect of measuring boundary conditions, substrate material properties and specimen geometry on measured d33 value were conducted. The experimental results reveal that the determined d33 coefficient by this technique is accurate as it falls within the manufactures tolerance specifications of PZT-5A piezoelectric film d33. Further, obtained simulation results on fibre reinforced and particle reinforced piezoelectric composite were found to be similar to those that have been obtained using more advanced techniques. FE-results showed that the measured d33 coefficients depend on measuring boundary condition, piezoelectric film thickness, and substrate material properties. This method was proved to be suitable for determination of d33 coefficient effectively for piezoelectric samples of any arbitrary geometry without compromising on the accuracy of measured d33.


1967 ◽  
Vol 89 (3) ◽  
pp. 333-338 ◽  
Author(s):  
F. J. Witt ◽  
R. C. Gwaltney ◽  
R. L. Maxwell ◽  
R. W. Holland

A series of steel models having single nozzles radially and nonradially attached to a spherical shell is presently being examined by means of strain gages. Parameters being studied are nozzle dimensions, length of internal nozzle protrusions, and angles of attachment. The loads are internal pressure and axial thrust and moment loadings on the nozzle. This paper presents both experimental and theoretical results from six of the configurations having radially attached nozzles for which the sphere dimensions are equal and the outside diameter of the attached nozzle is constant. In some instances the nozzle protrudes through the vessel.


2018 ◽  
Vol 233 ◽  
pp. 00025
Author(s):  
P.V. Polydoropoulou ◽  
K.I. Tserpes ◽  
Sp.G. Pantelakis ◽  
Ch.V. Katsiropoulos

In this work a multi-scale model simulating the effect of the dispersion, the waviness as well as the agglomerations of MWCNTs on the Young’s modulus of a polymer enhanced with 0.4% MWCNTs (v/v) has been developed. Representative Unit Cells (RUCs) have been employed for the determination of the homogenized elastic properties of the MWCNT/polymer. The elastic properties computed by the RUCs were assigned to the Finite Element (FE) model of a tension specimen which was used to predict the Young’s modulus of the enhanced material. Furthermore, a comparison with experimental results obtained by tensile testing according to ASTM 638 has been made. The results show a remarkable decrease of the Young’s modulus for the polymer enhanced with aligned MWCNTs due to the increase of the CNT agglomerations. On the other hand, slight differences on the Young’s modulus have been observed for the material enhanced with randomly-oriented MWCNTs by the increase of the MWCNTs agglomerations, which might be attributed to the low concentration of the MWCNTs into the polymer. Moreover, the increase of the MWCNTs waviness led to a significant decrease of the Young’s modulus of the polymer enhanced with aligned MWCNTs. The experimental results in terms of the Young’s modulus are predicted well by assuming a random dispersion of MWCNTs into the polymer.


Author(s):  
Antoni Świć ◽  
Arkadiusz Gola ◽  
Łukasz Sobaszek ◽  
Natalia Šmidová

AbstractThe article presents a new thermo-mechanical machining method for the manufacture of long low-rigidity shafts which combines straightening and heat treatment operations. A fixture for thermo-mechanical treatment of long low-rigidity shafts was designed and used in tests which involved axial straightening of shafts combined with a quenching operation (performed to increase the corrosion resistance of the steel used as stock material). The study showed that an analysis of the initial deflections of semi-finished shafts of different dimensions and determination of the maximum corrective deflection in the device could be used as a basis for performing axial straightening of shaft workpieces with simultaneous heat treatment and correction of the initial deflection of the workpiece. The deflection is corrected by stretching the fibers of the stock material, at any cross-section of the shaft, up to the yield point and generating residual stresses symmetrical to the axis of the workpiece. These processes allow to increase the accuracy and stability of the geometric shape of the shaft.


1993 ◽  
Vol 16 (2) ◽  
pp. 63-70 ◽  
Author(s):  
N.A. Hoenich ◽  
P.T. Smirthwaite ◽  
C. Woffindin ◽  
P. Lancaster ◽  
T.H. Frost ◽  
...  

Recirculation is an important factor in single needle dialysis and, if high, can compromise treatment efficiency. To provide information regarding recirculation characteristics of access devices used in single needle dialysis, we have developed a new technique to characterise recirculation and have used this to measure the recirculation of a Terumo 15G fistula needle and a VasCath SC2300 single lumen catheter. The experimentally obtained results agreed well with those established clinically (8.5 ± 2.4% and 18.4 ± 3.4%). The experimental results have also demonstrated a dependence on access type, pump speeds and fistula flow rate. A comparison of experimental data with theoretical predictions showed that the latter exceeded those measured with the largest contribution being due to the experimental fistula.


2011 ◽  
Vol 320 ◽  
pp. 259-262
Author(s):  
Xu Ran ◽  
Zhe Ming Zhu ◽  
Hao Tang

The mechanical behavior of multi-cracks under compression has become a very important project in the field of fracture mechanics and rock mechanics. In this paper, based on the previous theoretical results of the failure criterion for brittle materials under compression, experiment study is implemented. The specimens are square plates and are made of cement, sand and water, and the cracks are made by using a very thin film (0.1 mm). The relations of material compressive strength versus crack spacing and the lateral confining stress are obtained from experimental results. The experimental results agree well with the failure criterion for brittle materials under compression, which indicates that the criterion is effective and applicable.


Sign in / Sign up

Export Citation Format

Share Document