Effect of the Wall on Two-Phase Turbulent Motion

1960 ◽  
Vol 27 (1) ◽  
pp. 5-15 ◽  
Author(s):  
S. L. Soo ◽  
C. L. Tien

Stationary solution on the effect of a wall on two-phase (solid particles in gas) turbulent motion shows that the intensity of motion of solid particles is affected by the presence of the wall and the distribution of turbulent intensity of the stream near the wall. The intensity of motion of solid particles can be significantly higher than the turbulence intensity of the mean stream. These modifications are consequences of Bernoulli force acting between the wall and the particle.

1960 ◽  
Vol 82 (3) ◽  
pp. 609-621 ◽  
Author(s):  
S. L. Soo ◽  
H. K. Ihrig ◽  
A. F. El Kouh

Experimental methods for the determination of certain statistical properties of turbulent conveyance and diffusion of solid particles in a gaseous state are presented. Methods include a tracer-diffusion technique for the determination of gas-phase turbulent motion and a photo-optical technique for the determination of motion of solid particles. Results are discussed and compared with previous analytical results.


2008 ◽  
Vol 12 (2) ◽  
pp. 59-68 ◽  
Author(s):  
Ali Mergheni ◽  
Ticha Ben ◽  
Jen-Charles Sautet ◽  
Gille Godard ◽  
Nasrallah Ben

For simultaneous measurement of size and velocity distributions of continuous and dispersed phases in a two-phase flow a technique phase-Doppler anemometry was used. Spherical glass particles with a particle diameter range from 102 up to 212 ?m were used. In this two-phase flow an experimental results are presented which indicate a significant influence of the solid particles on the flow characteristics. The height of influence of these effects depends on the local position in the jet. Near the nozzle exit high gas velocity gradients exist and therefore high turbulence production in the shear layer of the jet is observed. Here the turbulence intensity in the two-phase jet is decreased compared to the single-phase jet. In the developed zone the velocity gradient in the shear layer is lower and the turbulence intensity reduction is higher. .


1958 ◽  
Vol 3 (4) ◽  
pp. 361-372 ◽  
Author(s):  
A. A. Townsend

Fluctuations of velocity and temperature which occur in a turbulent flow in a stably-stratified atmosphere far from restraining boundaries are discussed using the equations for the turbulent intensity and for the mean square temperature fluctuation. From these, an equation is derived for the flux Richardson number in terms of the ordinary Richardson number and some non-dimensional ratios connected with the turbulent motion. It is shown that the interaction between the temperature and velocity fields imposes on the flux Richardson number an upper limit of 0·5, and on the ordinary Richardson number a limit of about 0·08. If these values are exceeded, no equilibrium value of the turbulent intensity can exist and a collapse of the turbulent motion would occur. Although the analysis applies strictly only to a homogeneous non-developing flow, it should have approximate validity for effectively homogeneous, developing flows, and the predictions are compared with some recent observations of these flows.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 873
Author(s):  
Dandan Xia ◽  
Liming Dai ◽  
Li Lin ◽  
Huaifeng Wang ◽  
Haitao Hu

The field measurement was conducted to observe the wind field data of West Pacific typhoon “Maria” in this research. With the application of ultrasonic anemometers installed in different heights (10 m, 80 m, 100 m) of the tower, the three dimensional wind speed data of typhoon “Maria” was acquired. In addition, vane-type anemometers were installed to validate the accuracy of the wind data from ultrasonic anemometers. Wind characteristics such as the mean wind profile, turbulence intensity, integral length scale, and wind spectrum are studied in detail using the collected wind data. The relationship between the gust factor and turbulence intensity was also studied and compared with the existing literature to demonstrate the characteristics of Maria. The statistical characteristics of the turbulence intensity and gust factor are presented. The corresponding conclusion remarks are expected to provide a useful reference for designing wind-resistant buildings and structures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anne-Christine Bay-Jensen ◽  
Asger Bihlet ◽  
Inger Byrjalsen ◽  
Jeppe Ragnar Andersen ◽  
Bente Juhl Riis ◽  
...  

AbstractThe heterogeneous nature of osteoarthritis (OA) and the need to subtype patients is widely accepted in the field. The biomarker CRPM, a metabolite of C-reactive protein (CRP), is released to the circulation during inflammation. Blood CRPM levels have shown to be associated with disease activity and response to treatment in rheumatoid arthritis (RA). We investigated the level of blood CRPM in OA compared to RA using data from two phase III knee OA and two RA studies (N = 1591). Moreover, the association between CRPM levels and radiographic progression was investigated. The mean CRPM levels were significantly lower in OA (8.5 [95% CI 8.3–8.8] ng/mL, n = 781) compared to the RA patients (12.8 [9.5–16.0] ng/mL, n = 60); however, a significant subset of OA patients (31%) had CRPM levels (≥ 9 ng/mL) comparable to RA. Furthermore, OA patients (n = 152) with CRPM levels ≥ 9 ng/mL were more likely to develop contra-lateral knee OA assessed by X-ray over a two-year follow-up period with an odds ratio of 2.2 [1.0–4.7]. These data suggest that CRPM is a blood-based biochemical marker for early identification OA patients with an inflammatory phenotype.


2011 ◽  
Vol 328-330 ◽  
pp. 1755-1758
Author(s):  
Han Xiao Liu ◽  
Zhong Liu ◽  
Huai Liang Li ◽  
Xin Xin Feng ◽  
Zhen Zhong Xing

In this paper, the continuity equation, momentum equation and the k-ε turbulence equation were introduced to simulate the flow field of the multiple vortex bodies in different spacing cases. Found that each vortex body had good effect in producing vortex, and the greater flow field spacing, the smaller the highest velocity; the turbulence intensity is increasing gradually from the former vortex body to the next one, and there may be a best spacing between the vortex bodies which makes the best turbulent intensity. All of these theories provide a train of thought for the turbulent coalescence mechanism.


2007 ◽  
Vol 263 ◽  
pp. 189-194
Author(s):  
Ivo Stloukal ◽  
Jiří Čermák

Coefficient of 65Zn heterodiffusion in Mg17Al12 intermetallic and in eutectic alloy Mg - 33.4 wt. % Al was measured in the temperature region 598 – 698 K using serial sectioning and residual activity methods. Diffusion coefficient of 65Zn in the intermetallic can be written as DI = 1.7 × 10-2 m2 s-1 exp (-155.0 kJ mol-1 / RT). At temperatures T ≥ 648 K, where the mean diffusion path was greater than the mean interlamellar distance in the eutectic, the effective diffusion coefficient Def = 2.7 × 10-2 m2 s-1 exp (-155.1 kJ mol-1 / RT) was evaluated. At two lower temperatures, the diffusion coefficients 65Zn in interphase boundaries were estimated: Db (623 K) = 1.6 × 10-12 m2 s-1 and Db (598 K) = 4.4 × 10-13 m2 s-1.


Stroke ◽  
2012 ◽  
Vol 43 (suppl_1) ◽  
Author(s):  
Tareq Kass-Hout ◽  
Maxim Mokin ◽  
Omar Kass-Hout ◽  
Emad Nourollahzadeh ◽  
David Wack ◽  
...  

Objective: To use the Computed Tomography Perfusion (CTP) parameters at the time of hospital admission, including Cerebral Blood Volume (CBV) and Permeability Surface area product (PS), to identify patients with higher risk to develop hemorrhagic transformation in the setting of acute stroke therapy with intravenous thrombolysis. Methods: Retrospective study that compared admission CTP variables between patients with Hemorrhagic Transformation (HT) acute stroke and those with no hemorrhagic transformation. Both groups received standard of care intravenous thrombolysis with tPA. Twenty patients presented to our stroke center between the years 2007 - 2011 within 3 hours after stroke symptoms onset. All patients underwent two-phase 320 slice CTP which creates CBV and PS measurements. Patients were divided into two groups according to whether or not they had HT on a follow up CT head without contrast, done within 36 hours of the thrombolysis therapy. Clinical, demographic and CTP variables were compared between the HT and non-HT groups using logistic regression analyses. Results: HT developed in 8 (40%) patients. Patients with HT had lower ASPECT score ( P =.03), higher NIHSS on admission ( P= .01) and worse outcome ( P= .04) compared to patients who did not develop HT. Baseline blood flow defects were comparable between the two groups. The mean PS for the HT group was 0.53 mL/min/100g brain tissue, which was significantly higher than that for the non-HT group of 0.04 mL/min/100g brain tissue ( P <.0001). The mean area under the curve was 0.92 (95% CI). The PS threshold of 0.26 mL/min/100g brain tissue had a sensitivity of 80% and a specificity of 92% for detecting patients with high risk of hemorrhagic transformation after intravenous thrombolysis. Conclusions: Admission CTP measurements might be useful to predict patients who are at higher risk to develop hemorrhagic transformation after acute ischemic stroke therapy.


Sign in / Sign up

Export Citation Format

Share Document